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ABSTRACT
Supercapacitors are an attractive option for energy buffering
because of their high efficiency, durability, and low environ-
mental impact. For energy-aware applications, it is desirable
to accurately estimate the buffered energy. Under conditions
of varying energy supply and demand, estimation of buffered
energy by using only the supercapacitor terminal voltage is in-
accurate because this does not fully comprehend the physical
state of charge. To address this problem, we present a Kalman
filtering formulation, using the accepted three-branch circuit
model for supercapacitors. Compared with an ideal capacitor,
the physically-motivated three-branch model provides a much
more accurate representation of the state of charge via three
internal state voltages associated with short, medium, and
long term charging constants. The proposed Kalman formu-
lation tracks these unobservable internal states. This method-
ology demonstrates a significantly more accurate estimate of
the buffered energy as compared with the alternative models
of ideal capacitance or a recursive computation of the stored
energy. Simulations conducted with variations that approxi-
mate recorded solar intensity profiles, our proposed approach
has an error of 1% compared with 31% and 85% for the re-
spective alternative models.

Index Terms— supercapacitor, ultracapacitor, electric
double layer capacitor, solar energy, kalman filter, state of
charge, energy awareness.

1. INTRODUCTION

Supercapacitors are established as a compelling solution for
high power buffering applications. These applications favor
supercapacitors due to their ability to bank and supply power
at levels an order of magnitude beyond the capabilities of
electrochemical battery technologies per unit weight. This su-
perior power density has been utilized for regenerative break-
ing [1], elevator [2], and automating starting systems for com-
bustion engines [3]. Supercapacitors can also provide suf-
ficient energy density (e.g., Maxwell 3000F [4] with a stor-
age capacity of 11,000 Joules) for deployment in field sys-
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tems demanding much lower power consumption levels (e.g.,
10 mW–10 W [5, 6]). For these systems, where energy is at
a premium, being able to predict the remaining energy (i.e.,
time-to-full-depletion) plays an extremely important role for
operational efficiency. Although the remaining supercapac-
itor energy can be naı̈vely predicted as E = 1

2CV 2, this is
far from accurate for systems where the range of operational
power consumption is wide (e.g., two orders-of-magnitude).
This fact is due to the non-ideal behavior of supercapacitors,
modeled in [7, 8, 9]. Due to the electrochemical make-up of
the supercapacitors, significant electrical and chemical phe-
nomena effect its response, thereby creating unobservable in-
ternal states of charge.

In this paper, we describe a model which treats these in-
ternal states as unobservable variables, as well as the superca-
pacitor current and voltage as the controllable input and ob-
servable output, respectively. By using a extended Kalman
filter (EKF), the internal states are continuously estimated
and updated based on the observed input voltage/current. Our
simulations, implementing the three branch equivalent circuit
model [9], demonstrate an improved energy estimation accu-
racy from 31% to 1%. The remainder of this paper is or-
ganized as follows: In Section 2, background information is
provided on supercapacitor modeling. An introduction to the
EKF and our modeling of the supercapacitor to allow Kalman
filtering for internal state estimation are provided in Section 3.
Naı̈ve estimation-based as well as our Kalman-based simula-
tion results are provided in Section 4, followed by our con-
clusions and future directions in Section 5.

2. SUPERCAPACITOR MODELING

Compared to electrolytic capacitors, supercapacitors provide
significantly higher capacitance. This higher capacitance is
obtained by having porous, activated carbon electrodes with a
very large effective surface area, and enables kilo-Farad level
capacitances to be packaged in hand-held form factors. At
the same time, however, when supercapacitors are charged or
discharged, the charge from the terminal takes significantly
different amounts of time to migrate through the porous sur-
faces to or from the different regions of the electrode area. As
a result, under rapid charging or discharging, charge buildup
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Fig. 1. Three-branch supercapacitor equivalent circuit [9].

in different regions of the electrode area is not homogeneous
and charge re-distribution side effects are encountered. After
the current stops after a period of rapid discharging, terminal
voltage rebounds as charge “redistributes” from deeper pores.
Vice versa, after rapid charging, charge redistribution causes
a fall in terminal voltage. Leakage can also impact how much
usable energy remains in a supercapacitor, but this long term
effect can be insignificant for the time frame of charge re-
distribution [7, 8]. Because of charge redistribution, termi-
nal voltage is insufficient to measure supercapacitors’ state of
charge (SOC).

Diffusion through the porous electrode can be precisely
modeled using series RC-transmission line representation [10].
The distributed transmission line model is, however, in-
tractable to work with and therefore a simplified three-branch
model shown in Fig. 1, which accounts for charge redis-
tribution with just three parallel RC-branches, has been
proposed [9]. The model is much more tractable because it
uses only lumped circuit elements and has been shown to be
effective in modeling SOC, when used with parameter val-
ues estimated for the R and C elements from experimentally
measured device data [9].

Using the three branch model in Fig. 1, this paper presents
an extended Kalman filter (EKF) approach for tracking the
buffered energy in a supercapacitor. The EKF uses the in-
ternal voltages across the capacitances in each of the three
branches to represent the SOC. Because these voltages are
not directly observable the EKF is needed to track them. Our
approach shares some similarities with prior work on the SOC
observability problem for battery systems, where Kalman fil-
tering is a widely implemented solution [11, 12, 13]. The
device models are very different in the two scenarios and so
are the Kalman filter formulations.

3. EXTENDED KALMAN FILTER

The EKF tracks the hidden SOC in the three-branch superca-
pacitor model using recursive predict and update operations.
For each time interval ∆tk, the EKF predicts the current SOC,
xk = [V1 V2 V3]T, and terminal voltage zk = Vsc:

x̃k = fk(x̂k−1,uk−1,∆tk). (1)
z̃k = hk(x̃k,uk). (2)

The predictions x̃k and z̃k depend on the input current,
uk−1 = Isc, and previous estimate, x̂k−1. x̃k is updated to

incorporate new information from the observation zk, accord-
ing to the Kalman gain matrix [14, 15], Kk:

x̂k = x̃k + Kk (zk − z̃k) , (3)

Kk balances between predict and update by treating uncer-
tainty in each as normally distributed random variables, and
tracking their respective covariance matrices, P̃k, and S̃k.
This allows whichever has lower uncertainty to be favored.

The critical EKF implementation details are: a) evaluat-
ing the prediction and update operations, and b) modelling
uncertainty with the covariances P̃k, and S̃k to achieve ac-
ceptable balance in Kk.

The prediction functions f and h, are numerically evalu-
ated using the system of differential equations from the equiv-
alent circuit in Fig. 1, viz.,

d

dt
x = Fkx + Bku, (4)

z = Hkx + Dku. (5)

where the matrices Fk, Hk, Bk, and Dk can be obtained in
terms of the values for the circuit elements in Fig. 1 as sum-
marized in the equations listed at the top of the next page (in
two column format). The numeric solver produces x̃k and z̃k
from (4) and (5) using the time interval ∆tk and initial condi-
tions x̂k−1.

Balancing the Kalman gain (matrix) Kk between predic-
tions from an approximate model, and observations that may
be noisy or incomplete, is difficult. Disregarding uncertainty
allows exact prediction via solution of the equivalent circuit.
However, without modeled uncertainty, P̃k, and S̃k decrease
each iteration, eventually leaving Kk undefined.

Our EKF models uncertainty using the additional unob-
served noise current, Inoise in Fig. 1. Inoise is a random, zero
mean signal with bandwidth and power proportional to uk.
Inoise can be accurately modelled by the process and obser-
vation noise covariances, Qk and Rk, in the EKF first-order
approximation1:

xk ≈ xk−1 + (Fxk−1 + Buk−1) ∆tk +N (0,Qk), (6)
zk ≈ Hxk + Duk +N (0,Rk). (7)

Qk and Rk are then used to calculate the Kalman gain:

P̃k = (I + Fk) P̂k−1 (I + Fk)
T

+ Qk, (8)

S̃k = HkP̃kH
T
k + Rk, (9)

Kk = P̃kH
T
kS̃
−1
k . (10)

The intuition behind calculating Qk and Rk from Inoise
is: uncertainty should be proportional to the rate-of-
change of the individual internal states. Slowly charging

1The UKF (unscented Kalman filter) can improve the accuracy of propa-
gating uncertainty P̂k through the model [16, 12], but does not address how
to characterize process noise as the Gaussian process, N (0,Qk). Because
xk represents capacitor voltages which are continuous in time, linear EKF
approximations are adequate.
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(small uk), decreases the bandwidth of Inoise, penetrating all
three branches (low-pass filters) regardless of time-constant.
Hence, uncertainty in all branches allows predictions of V2

and V3 to be updated when voltage settles and branch voltages
are most apparent from the observation. Quickly charging
(large uk), increases the bandwidth, decreasing prediction
uncertainty for branches that do not react to abrupt charging.

Formulating Qk and Rk from the continuous random
Inoise signal is done by applying the linear approximation (6)
recursively to the noise signal N times within the interval
∆tk:

N (0,Qk) =

N∑
n=1

(
I + F∆tk

N

)n−1
B∆tk

N Inoise|n−1 . (11)

Because (11) is a weighted sum of the normally distributed
values of Inoise, finding the covariance Qk is straightforward.
The output covariance Rk is determined by the value Inoise,N
when zk is observed, and is uncorrelated with the process
noise:

N (0,Rk) = DInoise,N . (12)

4. EVALUATION

For evaluating our proposed framework we used the three-
branch model for two devices: a 1500F supercapacitor whose
parameters were reported in [9] and a 50F supercapacitor for
which we measured parameters in our lab, following the pro-
tocol recommended in [9]. Both sets of parameters are listed
in Table 1. These devices have a rated voltage of 2.7V and for
evaluating SOC tracking performance, we consider a charging
profile motivated by a solar harvesting application. Measured
solar variability, and corresponding power variation that must
be buffered by the supercapacitor are shown in Fig. 4. Fig-
ure 4 demonstrates a two decade dynamic range for power
availability in solar harvesting. To simplify the evaluation
of SOC tracking performance under such variability, we con-
sider a synthetic profile for the input charging current Isc that
is shown in Fig. 2(a), where the current profile is designed
to test SOC tracking by repeatedly charging and discharging
the supercapcitor between 0V and its rated voltage 2.7V at
decreasing rates each cycle. Average power for each cycle is
annotated on the voltage output in Fig. 2(b). The logarithmic
scale allows Fig. 2 to show very fast charging (∼1 minute) ini-
tially, with progressively slower charges (up to ∼9 hours) on
the same axes. Using the logarithmic scale, the corresponding

Maxwell 50F BCAP 1500F DLC
(measured) (ref. [9])

Crated 50F 1500F
C1 42.5F 900F
C1var 5.1FV 600FV
R1 16 mΩ 1.5 mΩ
C2 10.5F 200F
R2 112 Ω 400 mΩ
C3 4F 330F
R3 628Ω 3.2Ω
Rleak 36kΩ 4kΩ

Table 1. Parameters for the three branch model.

solar power variability region is plotted in Fig. 2(b) for the
1500F capacitor. Doubling the solar array size or halving the
capacitance for the system shifts the solar power variability
region left, while opposite changes push it right into the more
benign supercapacitor power levels.

The wide range of powers applied to the supercapacitor
bring out the relevance of the three-branch internal state, es-
pecially for the initial high power cycles that cause the in-
ternal states, V2 and V3 to deviate significantly from the ob-
served voltage. For low power cycles, internal states remain
very close to the observed terminal voltage and the observ-
ability problem motivating the EKF is not as significant. This
is the situation for low power sensor node applications [17],
for instance.

EKF iterative SOC estimations are shown as points in
Fig. 2(b), and separated by ∆tk ∝ Isc such that change in
Vsc each iteration is approximately 10% of the rated voltage.
Sampling rate N

∆tk
, for the Inoise signal is also proportional to

Isc:

Tcharge(k) ≈ (1500F)(2.7V)÷ Isc|k = 10∆tk = 40∆tk
N (13)

Ground truth for the supercapacitor behavior shown in
Fig. 2 is generated using Simulink to provide truth data for
three-branch internal states that cannot be accessed in phys-
ical devices. Parameters given in Table 1, measured from a
1500F supercapacitor are used to calibrate the simulation. Isc
and Inoise sum together to produce the input current to the ref-
erence simulation. Inoise models uncertainty and is randomly
generated such that 20 log10

∣∣∣ Isc
σnoise

∣∣∣ = 20dB.

Accuracy for four energy-accounting schemes is shown in
Fig. 3. The first is a recursive “Coulomb count” technique that
tracks energy by integrating net power over each time interval.
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Fig. 2. The current (a), and voltage (b) charge-discharge profiles tests EKF state tracking over a range of power levels. The logarithmic scale shows cycles
ranging from in duration from ∼1minute to ∼ 9 hours.

Integrating fails to account for internal losses in the superca-
pacitor and allows error from unobserved Inoise to accumulate,
especially at high power levels. The second method, estimates
energy using the idealized capacitor model of “1/2CV 2

sc”. Be-
cause Vsc is observed, error does not accumulate, but there
is significant error because the dynamics of the three-branch
model are ignored in this over-simplification. The third and
final “predict only” technique models the true three-branch
dynamics, but sets Kk to zero throughout, disregarding Vsc
observations. This provides the best accuracy among meth-
ods other than the EKF, but still allows error to accumulate.
The EKF “Kalman” provides the best accuracy by accounting
for the true three-branch dynamics of the internal SOC and
also the uncertainty associated with observations.

5. CONCLUSIONS

The naı̈ve remaining energy formula of E = 1
2CV 2 yields

inaccurate results for the energy stored in a supercapaci-
tor, especially when the power consumption range of the
supercapacitor-based system is wide (two or more orders of
magnitude). This formula, which is suitable for a regular
capacitor proves inaccurate because the physical phenomena
associated with supercapacitor charging create unobservable
internal states of charge (SOC).

A Kalman Filter-based method is introduced to contin-
uously predict and estimate the internal states by sampling
the supercapacitor terminal voltage and current, which are
the only two observable values. The methodology is vali-
dated via simulations using a synthetic charge-discharge pro-
file that spans measured dynamic range in solar power vari-
ation. Results indicate that the proposed approach signifi-
cantly improves the estimates of available energy, attaining
root mean squared error of 1% compared to 31% for the naı̈ve
E = 1

2CV 2 model.
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Fig. 3. Comparison of the accuracy of energy-awareness methods
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