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ABSTRACT 
 

A weighing system in which a sensor is not mounted to a 
discharger especially in vertical filling gives rise to an excess of 
weight added to the given target of weight. In addition, the excess 
is not constant on account of some factors, such as vibration of the 
machine, flow of the substance, and cycle time of the system. 
These factors cause the surplus to oscillate. To overcome this 
problem, Kalman filtering is performed to predict the optimal 
setpoint to meet the defined target. To illustrate the performance of 
the proposed technique, the resulting outcome is compared with 
that of using the conventional statistical method. The results have 
shown that the proposed approach has significantly increased the 
speed and lowered the error. It is pointed out that the proposed 
algorithm may be preferable to the traditional statistical technique 
due to its effectiveness and its simple implementation. 
 

Index Terms—Estimation, excess of weight, filling 
weighing system, Kalman filter, prediction, setpoint 
 

1. INTRODUCTION 
 

A filling weighing machine (shown in Fig. 1) is a measuring 
system used to weigh a substance during filling/packaging process 
to a desirable quantity. A discharger releases the substance into a 
container until the sensor detects that the targeted weight has been 
filled. Generally, such system generates a delay in sensing data 
because the sensor does not sense the data at the same time as the 
substance is released. During weighing process, a setpoint of 
weight cannot equal a desired target of weight because at the time 
that the sensed weight equals the defined target of weight,  there is 
an excess of weight which is not sensed left in the free fall state 
from the discharger. To visualize this problem, the mentioned issue 
is graphically shown in Fig. 2(a). 

In Fig. 2(b), the setpoint is compensated by the surplus of 
weight in order to ensure the actual weight satisfy the defined 
target of weight. However, the recompensation is not that simple 
since the surplus is not constant (see Fig. 2(a)) due to some 
interfering factors. These factors are produced by vibration of the 
machine, fluctuating flow of the substance and cycle time of 
weight reading of the system. To see why this is problematic, 
assume the machine in Fig. 1 operates 5 weighing cycles per 
minute where an averaged 6-gram error is in each cycle and the 
machine is operated 20 hours a day, 25 days a month. 
Approximately, the weighing error of one weighing machine is 
summed up to 2.16 tons of excessive substance a year.  

Recently,  several  works  have been presented  to  seek  the 
appropriate  setpoint.  In [1], a set of excess of weight is collected 
within  a  period  of  time  in  order  to  calculate  its   average  for 
compensating the setpoint. To use this scheme, some memories are 

 
Fig. 1. Vertical filling weighing machine. 

 

 
Fig. 2. Graphical relation of target weight and setpoint. 

 
needed to collect data and the recompensation of the setpoint is 
delayed due to the computation of average excess weight. Besides, 
the compensation may not be able to adapt to any changes in the 
surplus. In [2,3], the techniques are concentrated on improving a 
proportional-integral-derivative controller so that the setpoint and 
the desired target can be set identically. Since the substance is 
gradually and progressively filled, the excess weight is fairly low 
and can be neglected. Although these schemes provide good 
results, they are time-consuming and require large load processor. 
Later, the method based on fuzzy logic is proposed in [4] to avoid 
a mathematical model. Consequently, many rules must be created 
to cover many situations that the excess weight may occur. 

In this work, a new approach which is simpler than the 
schemes in [1-4] is proposed. Not only the time consumption of the 
proposed technique is less, but also its memory usage is more 
efficient. In addition, a new technique for predicting the optimal 
setpoint is presented to improve the efficiency of the machine in 
Fig. 1. The proposed technique is compared with the compensation  
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Fig. 3. Block diagram of the proposed compensation design. 

 
technique employed in [1] based on the same machine. 

The organization of this paper is as follows. The 
compensation design of the proposed algorithm is described in 
Section 2. The simulation and experimental results of forecasting 
the optimal setpoint are furnished in Section 3. Section 4 is 
devoted for the conclusion. 

 

2. COMPENSATION DESIGN 
 

In this section, the proposed technique is explained in details how 
it is applied for the machine to obtain the optimal setpoint. The 
block diagram of our compensation design is depicted in Fig. 3. 
 

2.1. Proposed technique 
 
Since Kalman introduced his famous algorithm, Kalman filtering 
has been ubiquitously utilized in many applications [5]. In the 
model of Kalman filter, it is assumed that the state of a system at 
time k is inherited from the previous state at time k-1 as expressed 
in the following equation, 

k k-1 k kx = Ax + Bu + w  (1) 

where xk is a linear summation of its prior state value plus a control 
signal and a process noise. The variable uk is the control signal to 
the system, and wk is the process noise referred to the vibration of 
the machine, fluctuating flow of the substance, and cycle time of 
weight reading of the system. A is the state transition weight and B 
is the control input weight. 

The  measurement  zk  of  the  system  can  be  modeled  as  

k k kz = Hx + v  (2) 

where  zk  is the measurement, H is the transformation weight and 
vk is the measurement noise. The noises wk and vk are assumed to 
be zero-mean Gaussian with variances Q and R, respectively. 

In designing Kalman filter, a mathematical model is required 
to estimate the incoming value based on its current value. The state 
transition weight A and the control input weight B should be 
modeled into the mathematical model as well. However, no 
essential data is provided by the machine to do so. Hence, the state 
transition weight A is set to one, A=1, owing to the system of the 
machine does not change from step to step. The control input 
weight B is also assigned to one, B=1. In this system, the control 
signal uk is not needed, so it is set to zero,  uk = 0. The only factor 
that can be mathematically modeled is the transformation weight 
H. 

In this work, the target weight values are chosen at 3005 
grams, 3305 grams, 3505 grams, 4005 grams and 5005 grams. The 
total of 200 samples (40 samples for each selected target weight) 
are employed to determine the relationship between the value of 
excess weight and the target weight, as depicted in Fig. 4. 
According to the information given in Fig. 4, at each selected 
weight value, the new setpoint is achieved by subtracting the  
average surplus from the selected weight value. The ratio of the 
selected  target  and  the new setpoint is given in Table 1. In 
addition, noise  variance  and  standard  deviation  of  the  average 

 
Fig. 4. Relationship between the excess values and the targets. 

 

 
Fig. 5. Target-to-setpoint ratio as a function of the new setpoint.  

 
surplus are calculated. The relationship between the selected 
target-to-the new setpoint ratio and the new setpoint is plotted in 
Fig. 5. From Fig. 5, an exponential model is fitted to the data to 
extract the transformation weight H as expressed by 

-7-0.001051(T ) -2.788(10 )(T )g gH = 0.1855e + 1.006e  (3) 

where Tg is a weight target. Substituting the variable Tg with 
3005g, 3305g, 3505g, 4005g and 5005g, respectively, into (3), 
resulting in the transformation weights H given in Table 2. 
 

2.2. Kalman filtering procedure 
 
To achieve convergence, the Kalman filter estimates the process 
using feedback control where the feedback is obtained in a form of 
measurement. Accordingly, the Kalman filter involves two steps, 
namely the prediction update and correction update. The prediction 
update and correction update can be described by the following 
mathematical equations. 
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TABLE 1. THE RELATION OF TARGETS AND SETPOINTS 

 
Selected weight targets 

3005g 3305g 3505g 4005g 5005g 

Average 
Surplus 

39g 36g 33g 30g 27g 

New 
Setpoint 

2966g 3269g 3472g 3975g 4978g 

Ratio 1.0131 1.0110 1.0095 1.0075 1.0054 

Measurement 
Noise 
Variance 

19.5537g2 

Standard 
Deviation of 
the Average 
Surplus 

±4.4220g 

TABLE 2. TRANSFORMATION WEIGHT AT EACH SELECTED TARGET WEIGHT 

 
Weight Targets 

3005g 3305g 3505g 4005g 5005g 

Transformation 
Weight H 

1.0130 1.0108 1.0097 1.0076 1.0056 

 

2.2.1. Prediction update 

 
kk|k-1 k-1|k-1

x = Ax + w  (4) 

T
k|k-1 k-1|k-1P = AP A + Q  (5) 

where  k|k-1x is the predicted state value at time k, given corrected 

state at time k-1,  k-1|k-1x . Pk|k-1 is the predicted error variance at 

time k, given corrected error variance at time k-1, Pk-1|k-1. 
 

2.2.2. Correction update 

T T -1
k k|k-1 k|k-1K = P H (HP H + R)  (6) 

  
k kk|k k|k-1 k|k -1

x = x + K (z - H x )  (7) 

k|k k k|k-1P = (I - K H)P  (8) 

where Kk is Kalman gain,  k|kx is the corrected state at time k, Pk|k 

is the corrected estimate of error variance at time k. 
 

2.3. Soft thresholding 
 

For circumventing either too high or too low value of the surplus 
that can cause distortion of the setpoint value, soft thresholding is 
introduced to produce a set of conditions. These conditions are 
based on the measurement noise variance provided in Table 1 and 
are expressed as follows. 
 

#Defined Rule 1 – Upper boundary 
Upper boundary  = Target – Measurement Noise Variance(see Table 1) 
#Defined Rule 2 – Lower boundary 
Lower boundary  = Target – 3 x Measurement Noise Variance 
#Condition 1 
 If setpoint ≥ upper boundary then 
  setpoint = upper boundary 
 End_if 
#Condition 2 
 If setpoint ≤ lower boundary then 
  setpoint = lower boundary  

End_if 

According to the assigned conditions, the obtained optimal setpoint 
varies between upper boundary and lower boundary so that the 
resulted setpoint is feasible. 

In the next section, the proposed technique is verified using 
MATLAB simulation and machine implementation. 

 

3. SIMULATION AND EXPERIMENT 
 

3.1. MATLAB simulation 
 

In the MATLAB simulation, the desired target, Tg, is set to 3005g. 
According to Table 1 and 2, R is 19.5537, H is 1.0130, and Q is 1. 
Since the proposed algorithm estimates the optimal setpoint from 

the previous setpoint,  0|0x is assigned to 2966g (from Table 1) and 

P0|0 is initially defined as 1. Additionally, upper boundary and 
lower boundary are set to 2985g and 2945g, respectively, using 
soft thresholding process. 

To demonstrate the performance of finding the setpoint, a set 
of predefined 200 sensed weight values is arbitrarily generated and 
utilized in the proposed scheme and the technique in [1]. The 
comparison of simulation results of both techniques is depicted in 
Fig. 6 and the statistical data of the simulated results are listed in 
Table 3. As can be seen in the simulation result shown in Fig. 6, 
the proposed technique provides less error in excess weight than 
the result of the technique in [1]. In addition, although the values 
of the predefined sensed weight are oscillated (either higher or 
lower than the desired target), the setpoint of the proposed 
technique does not fluctuate as much as the result of the technique 
in [1]. 
 

3.2. Experiment using the machine 
 
In experimenting using the machine depicted in Fig.1, two targets, 
namely 3005g and 5005g, are experimented. At each desired 
target, the efficiency of the proposed technique and the technique 
of [1] in experiment is compared. It is also noted that 200 samples 
are collected in each method. Fig. 7 and 8 are the experimental 
results for the desired targets of 3005g and 5005g, respectively. 
The parameters employed in the proposed technique are listed in 
Table 4. 

The information of the results given in Fig. 7 and 8 is 
summarized in Table 5. In addition, the results obtained from the 
proposed algorithm and the technique in [1] are compared in terms 
of the accuracy of weight and the speed of operation (per minute), 
as reported in Table 6. The accuracy of weight and the speed of 
operation are computed using the following equations,  

act Tg

Tg

W -W
%error =  x 100

W
  (9) 

pt [1]

[1]

S - S
%SpdPrf =  x 100

S
  (10) 

where  
Wact is the actual weight,  
WTg is the target of weight, 
SpdPrf is the speed performance, 
Spt is the speed obtained by the proposed technique, and 
S[1] is the speed acquired by the method of [1]. 
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Fig. 6. MATLAB simulation results. 

TABLE 3. STATISTICAL DATA OF THE SETPOINT (SIMULATION) 

Compensation 
Scheme 

Av.M Avg.SP Ex Var STD 

Proposed 
Technique 

3005.5g 
2967g 38g 7.7790 2.7891 

Method of  [1] 2955g 51g 55.2552 7.4334 

Av.M-Average Measured Weight, Avg.SP-Average Setpoint, Ex-Average Excess,  
Var-Variance of Setpoint, STD- Standard Deviation of Setpoint 

TABLE 4. SETTING PARAMETERS (EXPERIMENT) 

Desired Target H 
0|0x  0|0P  Up.Bou Lo.Bou 

3005g 1.0130 2966g 1 2985g 2945g 

5005g 1.0056 4978g 1 4985g 4945g 

Up.Bou-Upper Boundary, Lo.Bou-Lower Boundary, 
**The remaining parameters are set similarly to the MATLAB simulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly, the experimental results indicate that the proposed 
algorithm is superior to the technique in [1] for both targets, 3005g 
and 5005g, in terms of accuracy and speed. This is because the 
proposed technique adjusts its setpoints to the optimal setpoints 
whereas [1] gradually adjusts it towards a constant setpoint. 
However, such constant setpoint may not be an optimal value. 
Therefore, the surplus occurred using the technique in [1] is still 
more than that using the proposed method. 
 

4. CONCLUSION 
 
In this paper, the new scheme for obtaining the optimal setpoint in 
filling  weighing  system  is  proposed.  This  technique  provides a  

TABLE 5. STATISTICAL DATA OF THE SETPOINT (EXPERIMENT) 

Compensation 
Scheme 

Av.M Avg.SP Ex Var STD 

Proposed 
Technique 

3005.5g 2967g 39g 2.8606 1.6913 

Method of  [1] 3009.8g 2946g 64g 26.0502 5.1039 

Proposed 
Technique 

5009.3g 4982g 27g 5.7485 2.3976 

Method of  [1] 5011.1g 4946g 65g 28.1665 5.3072 

TABLE 6. ACCURACY AND SPEED COMPARISON (EXPERIMENT) 

Compensation 
Schemes 

Tg Av.M Varw STDw Error% 

Proposed 
Technique 

3005g 
3005.5g 6.2814 2.5063 0.0166 

Method of [1] 3009.8g 17.0629 4.1307 0.1604 

Proposed 
Technique 

5005g 
5009.3g 12.7562 3.5716 0.0851 

Method of [1] 5011.1g 14.4884 3.8064 0.1218 

Compensation Scheme 

Operation 
Cycle/ 
min 

(3005g) 

SpdPrf 
(%) 

Operation 
Cycle/ 
min 

(5005g) 

SpdPrf 
(%) 

Proposed Technique 7 
40% ↑ 

6 
50% ↑ 

Method of [1] 5 4 

Tg-Target, Varw-Variance of Measured Weight,  
STDw-Standard Deviation of Measured Weight, SpdPrf-Speed Performance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

solution to predict an optimal setpoint based on Kalman filtering 
and soft thresholding. The proposed scheme is verified not only by 
simulation but also by testing with an actual machine. It is 
observed that the new algorithm significantly enhances the 
accuracy and speed when compared with the conventional 
statistical method. The obtained simulation and experimental 
results suggest that this new technique may be an alternative 
solution for a real application. 

 
 
 
 

 
Fig. 7. Optimal setpoints predicted by the proposed algorithm (left) vs setpoints obtained by the method of [1] (right) at 3005g. 

 
Fig. 8. Optimal setpoints predicted by the proposed algorithm (left) vs setpoints obtained by the method of [1] (right) at 5005g. 
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