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ABSTRACT

From optimal supply decisions to anticipatory control sys-
tems, wind-based energy applications rely heavily upon
accurate, local, short-term forecasts of future wind speed.
Recent studies have shown continuous ranked probability
score (CRPS) minimizing models with Gaussian assumptions
to be effective for well-researched sites where those assump-
tions are appropriate. We consider the more general case
where Gaussianity is not assumed and access to historical
data may be constrained. Deriving a CRPS expression for a
minimum Extreme Value distribution, we use it to propose a
site-adaptive Weibull-based CRPS-minimizing model, which
is tested and shown to perform better than both deterministic
and probabilistic reference models on a ground-based array
of weather observation sites in northern Japan.

Index Terms— Wind energy, wind power forecasting,
continuous ranked probability score, wind turbine control

1. INTRODUCTION

Wind-based power projects are subject to significant uncer-
tainty due to the intermittent nature of the underlying natural
resource. This uncertainty impacts both economic and engi-
neering decisions such as turbine generator torque and blade
pitch control [1], turbine maintenance frequency [2], produc-
tion planning and supply contract quantities in power markets
[3]. Predictions of the future wind state play a vital role in
all such applications, and depending on the task the forecast
requirement ranges from a few minutes in advance [4], to sev-
eral hours or even days ahead [5]. Many anticipatory turbine
control tasks make use of wind forecasts on the order of 1–
6 hours, and here we elect to focus on this short-term time
scale.

The first of two major forecasting paradigms is based on
physical models of atmospheric flows. Known as numeri-
cal weather prediction (NWP) and extremely computation-
ally intensive, the efficacy of NWP on 36- and 72-hour time
scales has improved significantly with increasing computa-
tional capabilities [6], though spatial and temporal resolution

is limited, and both data-related and computational costs may
be a barrier to independent power providers. The second
paradigm is statistically-oriented and is feasible for making
local, short-term forecasts [7]. Such methods take a more me-
chanical approach to the problem with varying degrees of ex-
pert knowledge present. Past work on short-term forecasting
ranges from autoregressive time-series [8] and Kalman filters
[9] to more recently Bayesian structural break models [4] and
other probabilistic methods which capture spatio-temporal in-
formation in intuitive ways [5].

In particular, the regime-switching space-time (RST)
model from Gneiting et al. (2006) [5] and trigonometric di-
rection diurnal (TDD) model from Hering and Genton (2010)
[10] have been shown to outperform persistence, vector AR,
and other references on the multi-hour timescale in a well-
researched region of the American Pacific northwest, and
provide the context for our work. In real wind energy appli-
cations, constraints on historical data access will often limit
the expert knowledge available for a given forecast site, and
thus we propose a new CRPS-minimizing Weibull density
forecast model which aims to be site-adaptive, requiring min-
imal background knowledge of a particular observation site
or its neighbours. In this study we utilize a ground-based
weather observation network in Hokkaido, Japan.

In section 2 we discuss the prediction problem formulated
in this study, and review experimental details. In section 3
we derive a closed-form CRPS expression for the Generalized
Extreme Value distribution which lets us model a predictive
Weibull, and introduce the model-building and learning algo-
rithms. An evaluation of the results of our experiment using
both deterministic and probabilistic metrics and a subsequent
discussion are the focus of section 4. We end the paper in
section 5 with conclusions drawn from this study and discuss
the outlook for future lines of work.

2. DATA AND EXPERIMENT DETAILS

The Japan Meteorological Agency (JMA) operates a net-
work of over 1300 land-based sites capable of measuring and

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2203



recording meteorological variables, called Automated Mete-
orological Data Acquisition System (AMeDAS), of which
approximately 840 sites (one per 21km2 on average) are
equipped with the ability to measure wind speed and direc-
tion. Historical AMeDAS data is made public by the JMA
online (embedded in HTML tables), which is easily acquired
and processed using an algorithmic approach. In this study
we utilize a subset of the full dataset, namely 10-minute and
1-hour wind speed and direction observations for a cluster of
seven sites in northwestern Hokkaido.

As a general problem formulation, at present time t, as-
suming constant sampling period the basic task is to generate
a forecast of wind speed yt+k, where k > 0 is the forecast
lag, under the following data constraints: we have no topo-
graphical information, only a small set of past wind veloc-
ity/direction data (< 1 year), no prior information about the
stochastic wind profile of any forecast sites, but at each time
step we will collect new observations. In this study we sample
at 10-minute intervals, pre-process hourly averages for direct
input into the model, and design and test a model which fore-
casts k-step ahead hourly averages for any specified site in the
cluster.

Our model uses a fixed size training set of M > 0
time-steps worth of observations, which is updated and
used to re-train the model after each time step. If we let
S = {1, 2, ..., S} be an index of discrete forecast sites in
our region of interest, then at time t at each s ∈ S we have
Ds,t(t) = (xs,Ts , ...,xs,t), and our set of past observations
as of t will be simply Dt =

⋃
s∈S Ds,t. In advance, a fixed

“window” of most recent M time-steps per site is specified;
thus to start with, when data is scarce this M may have a
small upper bound. Given an M value, in this experiment the
model is built over the first 100 days’ worth of forecasts in
2006, and results are evaluated over the subsequent 100 days.

3. WIND FORECASTING MODEL

Both unary point-forecasts as well as density forecasts which
specify a predictive distribution for future wind speed are fea-
sible solutions to our forecasting problem, and while for many
end-users, a single numerical forecast may be easier to un-
derstand and interpret, valuable information about the proba-
bilistic profile of the wind can only be captured by a density
forecast [11]. If wind speed is denoted simply x, at time t we
specify θt and model a k-step ahead parametrized distribution
F (xt+k|θt).

The continuous ranked probability score (CRPS) is de-
fined for predictive distributionF (θ) and realized observation
x ∈ R as

CRPS(Fθ, x) =

∫ ∞
−∞

(F (t|θ)− 1[t ≥ x])2dt,

and is a proper scoring rule which has been shown to gener-
ally perform better and to be more robust in meteorological

applications than maximum likelihood inference [12]. Its use
as a loss function for parameter estimation has been advocated
by Gneiting et al. (2005) [13], and CRPS-minimization infer-
ence was used to optimize truncated Normal predictive distri-
butions of the RST and TDD models. Prior analysis led these
authors to the conclusion that a truncated Normal was a suf-
ficient approximation. In general however, non-Gaussianity
is observed frequently [8], and the issue faced with CRPS in-
ference is a distinct lack of closed-form expressions for many
distributions. A large body of work in regions around the
world indicates that the Weibull distribution tends to describe
the stochastic character of wind velocity well [14, 15, 16], and
here we seek a predictive Weibull using CRPS minimization
inference. The Weibull is defined with CDF

W(x|κ, λ) = 1− exp
(
−
(x
λ

)κ)
,

with shape and scale parameters κ > 0 and λ > 0. We take
an indirect approach to a CRPS expression for a predictive
Weibull W(κ, λ) by detouring through the minimum Gener-
alized Extreme Value (GEV) type-I distribution G(µ, σ) [17],
which is defined by CDF

G(y|µ, σ) = 1− exp

(
− exp

(
y − µ
σ

))
.

One can easily confirm that if X ∼ W(κ, λ), and we define
some Y = log(X), then Y ∼ G(µ, σ), with µ = log(λ), σ =
1/κ. Laio and Tamea (2007) [18] showed the CRPS to be
equivalent to the area under the curve of a particular single-
parameter loss function, here equivalently denoted

CRPS(F, x) = 2

∫ 1

0

τ(x− F−1(τ))

− 1[F (x) < τ ](x− F−1(τ))dτ.

Once a distribution is determined, several difficult integrals
often remain, and techniques for approaching them in the case
of maximum GEV distributions are elucidated by Friederichs
and Thorarinsdottir (2012) [19]. Here however, we explore
the case of a minimum GEV distribution, so for our purposes
we expand the right-hand side of the CRPS identity when
F = G(µ, σ), and take advantage of key properties of the
exponential integral Ei(·) and its siblings [20]. Namely, we
consider for z ∈ C and integer n > 0 the integral En(z) =∫∞
1
e−zt/tndt, for which

E1(z) =

∫ ∞
z

e−t

t
dt

holds for |ϕ| < π, recalling z = |z|eiϕ. This clearly holds
if z ∈ R and z > 0, and we can confirm that Ei(z) =
−E1(−z). The derivative of En(z) is defined recursively as
E′n(z) = −En−1(z) and the base case at n = 0 is a simple
integral to evaluate. This allows us to verify that

d

dτ
Ei(log(1− τ)) =

1

log(1− τ)
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indeed holds, and here using the series expansion

Ei(z) = γ + log(|z|) +

∞∑
n=1

zn

(n!)n

and with careful analysis of the limiting behaviour of the ex-
panded terms, we can derive the following expression for the
minimum GEV type-I CRPS

CRPS(G, z) = z − µ+ σ(γ − log(2)− 2Ei(L(z)))

where γ = 0.57721566... is the Euler-Mascheroni constant,
and L(z) = log(1 − G(z)). We can thus model κ and λ in
the wind speed domain, or equivalently model µ and σ in the
log-transformed domain.

Any wind speed x will be a non-negative real value, but
y = log(x) clearly may be negative irrespective of units,
which would imply arg(y) = π. As a practical issue, so long
as we deal with rare zero values appropriately, then shifting
the data by 1 and using a third (shift) parameter to slide back
the resulting predictive Weibull by 1, output almost uniformly
improves. Let φ ∈ {1}×Rd be the input feature vector; spe-
cific features to be included will be decided by an endogenous
model-building algorithm described below. We elect to work
in the wind speed domain, modelling the scale parameter us-
ing a simple linear combination λ(α) = αTφ, and the shape
as κ(β) = β0 + β1v + β2g, where

v =
1

k|S∗|

k−1∑
i=0

(∑
s∈S∗

∆x2s,t−i

) 1
2

,

g =
1
M

∑M−1
i=0 (xs′,t−i − xs′)3(

1
M

∑M−1
i=0 (xs′,t−i − xs′)2

)3/2 ,
that is, a linear combination of sample volatility and skew-
ness terms. Note S∗ is the index set of sites with a non-zero
number of factors included in the model for a given site, s′ is
the index for the forecast site, ∆xt = xt − xt−1, and xs′ is
the sample mean of the re-training set of wind speeds for site
s′. Following Gneiting et al. (2005) [13], at present time t,
to output a predictive distributionW(α∗,β∗) for time t + k,
our learning algorithm minimizes the arithmetic mean of the
CRPS over the sliding training set. That is, since the GEV
depends on the same controllable parameters,

arg min
α,β

1

M

M−1∑
i=0

CRPS(Gt−i(α,β), yt−i)

determines parameters and thus the predictive distributionW
at t. If data is scarce, M in these equations may have to be
reduced for the model-building stage. Optimization may re-
quire linear inequality constraints on the parameters, which
can be readily implemented in the R language and environ-
ment [21] using logarithmic barrier functions.

Algorithm 1 Pseudocode for model-building subroutine
1: ε ≥ 0,φ(t)← 1, h0 ← BIC(MinCRPS(φ)) . Initialize
2: for s ∈ S do
3: for x ∈ {xs,t, xs,t−1, ...} do
4: φ(t)← Append(φ(t), x−OLS(x))
5: h← BIC(MinCRPS(φ))
6: if h0 − h > ε then
7: break
8: else
9: h0 ← h

10: continue
11: end if
12: end for
13: end for

Input features denoted φ = (1, φ1, ..., φd) are selected
on a disjoint data subset used exclusively for model-building,
following the simple Algorithm 1. Having set threshold ε and
using the BIC as a proceed/site-switch criterion, like Hering
and Genton (2010) [10] we create residual series, where the
OLS operator regresses its argument’s re-training time-series
onto two trigonometric functions of the hour of day, and that
is removed from the observed response. MinCRPS(φ) ex-
ecutes the model which uses factors φ and returns a set of
forecasts to be plugged into the BIC subroutine.

4. RESULTS AND OBSERVATIONS

The experiment was carried out as discussed in section 2 for
seven sites in the northwestern Hokkaido AMeDAS cluster, at
forecast lag k = 2, 4, 6. That is, starting from the same fixed
date for each k, the subsequent 2400 predictive distributions
at k-steps ahead were computed. Naturally, different models
are learned at different sites, but results were similar across
sites, so avoiding redundancy here we discuss representative
results from the Ishikari site. As deterministic reference mod-
els we used persistence (PER) and a correlation-weighted
moving average (CMA) proposed by Nielsen et al. (1998)
[22]. For a non-deterministic reference, we selected the trun-
cated Normal TDD [10], the strongest model to come out of
the line of work following the original RST model.

The results of deterministic evaluations using RMSE and
MAE for the proposed (W-GEV) and reference models are
contained in Table 1. We observe that in relative terms the
probabilistic models perform better as the forecast lag in-
creases, and that W-GEV in general showed the smallest
deterministic forecast error. In absolute terms error increases
in k, an observation validated by posterior analysis of site
wind speed cross-correlations, which start strong and grow
weaker as lag k increases.

Next we consider a framework of sharpness subject to
calibration [23] of density forecasts. First considering sharp-
ness (for k = 2, similar results for other k), the model 10–
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RMSE MAE
k = 2 4 6 2 4 6

PER 0.59 0.82 0.98 0.42 0.61 0.72
CMA 0.59 0.84 1.00 0.45 0.65 0.80
TDD 0.56 0.71 0.81 0.44 0.54 0.63
W-GEV 0.53 0.69 0.81 0.41 0.52 0.61

Table 1. Deterministic forecast errors over the 2400-hour pe-
riod at lag k = 2, 4, 6.

90% Ave. CRPS

TDD 4.40 0.33
W-GEV 5.27 0.28

Table 2. Non-deterministic evaluation using average predic-
tive intervals and CRPS score.
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Fig. 1. Observations (red line), 10–90% prediction inter-
vals (increasingly transparent grey lines), and point forecasts
(points) for TDD (top) and W-GEV (bottom).

90% prediction intervals, point forecasts, and actual observa-
tions for the first 10 days of the test period are shown as an
example in Fig. 1. The average 90% interval widths are con-
tained in Table 2. TDD has the tighter interval but W-GEV
has stronger deterministic output, suggesting the latter may be
more robust towards lower-velocity sites which tend to have
noisier, less well-defined wind profiles. In the same table,
we see that W-GEV predictive distributions had a smaller av-
erage CRPS value. The deviation between the two metrics,
and the lower overall CRPS values for W-GEV leads us to
infer that over the test set W-GEV has better calibration than
TDD. To validate this, we can make use of probability inte-
gral transform (PIT) histograms, where the more Uniformly
distributed outputs suggest better calibration. The TDD looks
to be “overconfident” (Fig. 2), in that its density is sharply
concentrated, yet may not be well-calibrated; this observa-
tion generally matches the tighter prediction intervals seen for
TDD and smaller CRPS values seen for W-GEV.
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Fig. 2. PIT histograms (relative frequency) for TDD (left) and
W-GEV (right).

W-GEV results are in general robust to initial values,
though appropriate ranges may require empirical investiga-
tion; the optimal sliding training set length M differs be-
tween models, and in this experiment given a built model at
a given site, optimal M∗ for each model was selected over
M = 20, 21, ..., 100 according to the value that minimized
RMSE at each time scale. TDD tended to perform better
in the 25–35 day range, while W-GEV generally performed
better in the 35–45 day range.

5. CONCLUDING REMARKS

On the basis of deterministic forecast evaluation metrics, the
Weibull-GEV model proposed in this study was shown to
outperform reference models for forecast lag beyond 3 hours,
and to outperform the reference predictive distribution over a
cluster of sites where lower-speed, noisier wind profiles may
be present. Within the sharpness/calibration framework, for
a 100-day test set we observed that the reference model was
sharp but not necessarily well-calibrated, while subject to suf-
ficient calibration, the W-GEV model had better sharpness,
suggesting that Weibull models estimated using a CRPS-
minimization algorithm may indeed be a valid choice for
site-adaptive density forecasting applications with minimal
prerequisites in terms of site knowledge or historical data.

The model introduced here was designed to be simple and
intuitive, such that the merits of the derived Weibull-GEV
CRPS might be explicitly examined, and compared with pre-
vious well-known models. As a result however, information
about spatio-temporal correlations in the model was very lim-
ited. Future lines of work may pursue models which more
effectively capture the rich correlations that may be present
in such networked observations. As well, posterior analysis
suggests that a multi-modal distribution may more accurately
represent the data, and it can be thought that allowing for ex-
tension to mixture models may lead to further promising re-
sults.
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