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ABSTRACT
Onset detection forms the critical first stage of most beat
tracking algorithms. While common spectral-difference on-
set detectors can work well in genres with clear rhythmic
structure, they can be sensitive to loud, asynchronous events
(e.g., off-beat notes in a jazz solo), which limits their general
efficacy. In this paper, we investigate methods to improve the
robustness of onset detection for beat tracking. Experimental
results indicate that simple modifications to onset detection
can produce large improvements in beat tracking accuracy.

Index Terms— Music information retrieval, beat tracking

1. INTRODUCTION

Beat-tracking — the detection of “pulse” or salient, rhyth-
mic events in a musical performance — is a fundamental
problem in music content analysis. Automatic beat-detection
methods are often used for chord recognition, cover song de-
tection, structural segmentation, transcription, and numerous
other applications. A large body of literature has developed
over the past two decades, and each year sees numerous
submissions to the Music Information Retrieval Evaluation
eXchange (MIREX) beat tracking evaluation [1].

A common general strategy for beat tracking operates in
two stages. First, the audio signal is processed by an onset
strength function, which measures the likelihood that a mu-
sically salient change (e.g., note onset) has occurred at each
time point. The tracking algorithm then selects the beat times
from among the peaks of the onset strength profile.

As we will demonstrate, the behavior of standard onset
detectors tends to be dominated by the loudest events, typi-
cally produced by predominant or foreground instruments and
performers. In many styles of western, popular music — e.g.,
rock, dance, or pop — this presents no difficulty. Often, the
beat is unambiguously driven by percussion or foreground in-
strumentation, resulting in clear rhythmic patterns which are
amenable to signal analysis.

The assumption that beat derives from the predominant
foreground instrumentation does not hold in general across
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diverse categories of music. As a concrete example, a soloist
in a jazz combo may play a syncopated rhythm, or off-beat for
aesthetic or expressive purposes, while the accompaniment
maintains a steady pulse in the background. In such cases,
we would hope that a beat tracker would adaptively tune out
the foreground instrumentation and focus on the rhythmically
salient portion of the signal.

Reliable detection and separation of rhythmic elements in
a recording can be quite difficult to achieve in practice. Hu-
mans can tap along to a performance and adapt to sudden
changes in instrumentation (e.g., a drum solo), but this be-
havior is difficult for an algorithm to emulate.

1.1. Our contributions

In this work, we investigate two complementary techniques to
improve the robustness of beat tracking and onset detection.
First, we propose across-frequency median onset aggregation,
which captures temporally synchronous onsets, and is robust
to spurious, large spectral deviations. Second, we examine
two spectrogram decomposition methods to separate the sig-
nal into distinct components, allowing the onset detector to
suppress noisy or arrhythmic events.

1.2. Related work

Onset detection is a well-studied problem in music informa-
tion retrieval, and a full summary of recent work on the sub-
ject lies well beyond the scope of this paper. Within the
context of beat-tracking, the surveys by Bello et al. [2] and
Collins [3] provide general introductions to the topic, and
evaluate a wide variety of different approaches to detecting
onset events.

Escalona-Espinosa applied harmonic-percussive separa-
tion to beat-tracking, and derived beat times from the self-
similarity over features extracted from the different compo-
nents [4]. The approach taken in this work is rather different,
as we evaluate onset detectors derived from a single compo-
nent of a spectrogram decomposition.

Peeters [5] and Wu et al. [6] highlight tempo variation as
a key challenge in beat tracking. While tempo variation is
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Fig. 1. An example spectrogram (top) derived from five sec-
onds of vocals, piano, and drums. Sum across frequency
bands to derive onset strength (middle) results in spurious
peaks due to pitch bends and vibrato. Median aggregation
(bottom) produces a sparser onset strength function, and re-
tains the salient peaks.

indeed a challenge, our focus here is on improving the detec-
tion of salient onset events; the tracking algorithm used in this
work maintains a fixed tempo estimate for the duration of the
track, but allows for deviation from the tempo.

Alonso et al. [7] and Bello et al. [2] propose using tempo-
ral median-filtering of the onset strength envelope to reduce
noise and suppress spurious onset events. Temporal smooth-
ing differs from the median-aggregation method proposed in
this work, which instead filters across frequencies at each time
step prior to constructing the onset envelope.

This article addresses the early stages of beat tracking.
Rather than develop a new framework from scratch, we chose
to modify the method proposed by Ellis [8], which operates
in three stages:

1. compute an onset strength envelope ω(t),
2. estimate the tempo by picking peaks in the windowed

auto-correlation of ω(t), and
3. select beats consistent with the estimated tempo from

the peaks of ω(t) by dynamic programming.

Keeping steps 2–3 fixed allows us to evaluate the contribution
to accuracy due to the choice of onset strength function. We
expect that improvements to onset detection can be applied to
benefit other beat tracking architectures.

2. MEDIAN ONSET AGGREGATION

The general class of onset detector functions we consider is
based on spectral difference, i.e., measuring the change in

spectral energy across frequency bands in successive spectro-
gram frames [2]. The tracker of Ellis [8] uses the sum across
bands of thresholded log-magnitude difference to determine
the onset strength at time t:

ωs(t) ··=
∑
f

max(0, logSf,t − logSf,t−1), (1)

where S ∈ Rd×T
+ denotes the (Mel-scaled) magnitude spec-

trogram. This function effectively measures increasing spec-
tral energy over time across any frequency band f , and its
magnitude scales in proportion to the difference.

Note that ωs can respond equally to either a large fluctua-
tion confined to a single frequency band, or many small fluc-
tuations spread across multiple frequency bands. The latter
case typically arises from either a percussive event or multiple
synchronized note onset events, both of which can be strong
indicators of a beat. However, the former case can only arise
when a single source plays out of sync with the other sources,
such as a vocalist coming in late for dramatic effect.

To better capture temporally synchronous onset events,
we propose to replace the sum across frequency bands with
the median operator:

ωm(t) ··= median
f

max(0, logSf,t − logSf,t−1). (2)

This simple modification improves the robustness of the onset
strength function to loud, asynchronous events.

As illustrated by Figure 1, the resulting onset envelope
tends to be sparser, since it can only produce non-zero values
if more than half of the frequency bins increase in energy si-
multaneously. 1 Consequently, pitch bends have a negligible
effect on ωm, since their influence is typically confined to a
small subset of frequencies.

3. SPECTROGRAM DECOMPOSITION

In a typical musical recording, multiple instruments will
play simultaneously. When all instruments (generally, sound
sources) are synchronized, computing onsets directly from
the spectrogram is likely to work well. However, if one or
more sources play out of sync from each-other, it becomes
difficult to differentiate the rhythmically meaningful onsets
from the off-beat events. This motivates the use of source sep-
aration techniques to help isolate the sources of beat events.
In this work, we applied two different source-separation
techniques which have been demonstrated to work well for
musical signals: harmonic-percussive source separation [9],
and robust principal components analysis [10].

3.1. Harmonic-percussive source separation

Harmonic-percussive source separation (HPSS) describes the
general class of algorithms which decompose the magnitude

1In preliminary experiments, alternative quantile estimators (25th and
75th percentile) were found to be inferior to median aggregation.
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(a) Full spectrogram (b) Harmonic (c) Percussive (d) Low-rank

Fig. 2. Examples of spectrogram decomposition methods: (a) five seconds of a (Mel-scaled) spectrogram, consisting of guitar,
bass, drums, and vocals; (b) the harmonic component emphasizes sustained tones (horizontal lines); (c) the percussive empha-
sizes transients (vertical lines); (d) the low-rank component retains harmonics and percussives, but suppresses vocal glides.

spectrogram as S = H + P , where H denotes harmonics —
sustained tones concentrated in a small set of frequency bands
— and P denotes percussives — transients with broad-band
energy [9].

In this work, we used the median-filtering method of
Fitzgerald [11]. Let η and π denote the harmonic- and
percussive-enhanced spectrograms:

π ··=M(S,wp, 1)

η ··=M(S, 1, wh),

whereM(·, wp, wh) denotes a two-dimensional median filter
with window size wp × wh. The percussive component P is
then recovered by soft-masking S:

Pf,t = Sf,t

(
πp
f,t

πp
f,t + ηpf,t

)
,

where p > 0 is a scaling parameter (typically p = 1 or
2). Given P , the harmonic component H is recovered by
H = S − P .

Figure 2 (a–c) illustrates an example of HPSS on a short
song excerpt. The harmonic component (b) retains most of
the tonal content of the original signal (a), while the percus-
sive component (c) retains transients.

In the context of beat tracking, it may be reasonable to
use either H or P as the input spectrogram, depending on the
particular instrumentation. While percussive instruments reli-
ably indicate the beat in many genres (rock, dance, pop, etc.),
this phenomenon is far from universal, particularly when the
signal lacks percussion (e.g., a solo piano).

3.2. Robust principal components analysis

In contrast to a fixed decomposition (i.e., HPSS), it may be
more effective to apply an adaptive decomposition which ex-
ploits the structure of the spectrogram in question. Recently,
Yang demonstrated that robust principal components analysis
(RPCA) can be effective for separating vocals from accompa-
nying instrumentation [10, 12]. In this setting, RPCA finds a

low-rank matrix L ≈ S which approximates S by solving the
following convex optimization problem

L← argmin
L
‖L‖∗ + λ‖S − L‖1, (3)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖1 is the element-
wise 1-norm, and λ > 0 is a trade-off parameter.

In practice, the low-rank approximation tends to suppress
pitch bends and vibrato, which are both common character-
istics of vocals and may account for some of its success at
vocal separation. As shown in Figure 1, pitch bends can trig-
ger spurious onset detections due to lack of temporal conti-
nuity within each frequency band, and should therefore be
suppressed for beat tracking.

4. EVALUATION

To evaluate the proposed methods, we measured the align-
ment of detected beat events to beat taps generated by human
annotators. Following previous work, we report the following
standard beat tracking metrics [13]:

AMLt (range: [0, 1], larger is better) is a continuity-based
metric that resolves predicted beats at different allowed
metrical levels (AML), and is therefore robust against
doubling or halving of detected tempo;

F-measure (range: [0, 1], larger is better) measures the pre-
cision and recall of ground truth beat events by the pre-
dictor;

Information gain (range: [0, ·), larger is better) measures
the mutual information (in bits) between the predicted
beat sequence and the ground truth annotations.

Because different human annotators may produce beat se-
quences at different levels of granularity for the same track,
meter-invariant measures such as AMLt and Information Gain
are generally preferred; we include F-measure for complete-
ness.

Algorithms were evaluated on SMC Dataset2 [14], which
contains 217 40-second clips from a wide range of genres
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and instrumentations (classical, chanson, blues, jazz, solo
guitar, etc.). This dataset was designed to consist primarily
of difficult examples, and represents the most challenging
publicly available dataset for beat tracking evaluation. We in-
clude comparisons to the best-performing methods reported
by Holzapfel et al. [14] — Degara et al. [15], Böck and
Schedl [16], and Klapuri et al. [17] — and to the original
implementation described by Ellis [8].

4.1. Implementation

Each track was sampled at 22050Hz, and Mel-scaled mag-
nitude spectrograms were computed with a Hann-windowed
short-time Fourier transform with 2048 samples (≈ 93ms),
hop of 64 samples (≈ 3ms), d = 128 Mel bands, and a maxi-
mum frequency cutoff of 8000Hz. HPSS was performed with
a hop of 512 samples, window sizes wp = wh = 31, and
the power parameter was set to p = 2.0. Following Candès
et al. [10], the RPCA parameter was set to λ =

√
T , where

T denotes the number of frames. All algorithms were imple-
mented in Python using librosa.2

4.2. Results

Table 1 lists the average scores achieved by the proposed
methods on SMC Dataset2. For each metric, methods which
achieve statistical equivalence to the best performance are
listed in bold. Statistical significance was determined with
a Bonferroni-corrected Wilcoxon signed-rank test at level
α = 0.05.

We first observe the gap in performance between sum-Full
and Ellis [8], which differ only in their choice of parame-
ters: the original implementation used a lower sampling rate
(8000Hz), smaller window (256 samples) and hop (32 sam-
ples, 4ms), and fewer Mel bands (d = 32).3 Except for the
harmonic component method, all sum-based methods (first
group of results) perform comparably well.

Replacing sum onset aggregation with median aggrega-
tion (second group of results) boosts performance uniformly:
for each decomposition (except harmonic) and each metric,
median aggregation only improves the score. The largest im-
provement is observed on the percussive component. Across
all metrics, applying median aggregation to the percussive
component ties for the highest score among all methods.

The RPCA method (Low-rank) did not yield significant
improvements over either the full spectrogram or HPSS meth-
ods. This may be due to the fact that the dataset consists pri-
marily of instrumental (even single-instrument) recordings,
where there is less obvious benefit to source separation meth-
ods.

2http://github.com/bmcfee/librosa/
3The present implementation also includes a small constant timing cor-

rection, which improves performance for some metrics, but is known to not
affect the information gain score [13].

Table 1. Beat tracker performance on SMC Dataset2.

Algorithm AMLt F-measure Inf. gain
sum-Full 0.290 0.347 0.835
sum-Harmonic 0.222 0.283 0.655
sum-Percussive 0.322 0.366 0.858
sum-Low-rank 0.300 0.349 0.838
med-Full 0.340 0.375 0.965
med-Harmonic 0.224 0.268 0.720
med-Percussive 0.366 0.383 1.005
med-Low-rank 0.347 0.376 0.965
Böck & Schedl [16] 0.261 0.401 0.928
Degara et al. [15] 0.334 0.348 0.914
Ellis [8] 0.208 0.352 0.625
Klapuri et al. [17] 0.339 0.363 0.940

5. CONCLUSION

We evaluated two complementary techniques for improving
beat tracking: onset aggregation, and spectrogram decompo-
sition. The proposed median-based onset aggregation yields
substantial improvements in beat tracker accuracy over the
previous, sum-based method. Combining median onset ag-
gregation with percussive separation results in the best per-
formance on the SMC2 dataset.
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[16] Sebastian Böck and Markus Schedl, “Enhanced beat
tracking with context-aware neural networks,” in Proc.
Int. Conf. Digital Audio Effects, 2011.

[17] Anssi P Klapuri, Antti J Eronen, and Jaakko T Astola,
“Analysis of the meter of acoustic musical signals,” Au-
dio, Speech, and Language Processing, IEEE Transac-
tions on, vol. 14, no. 1, pp. 342–355, 2006.

2177


