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ABSTRACT 

 

Personalization techniques can be applied to address the sub-

jectivity issue of music emotion recognition, which is im-

portant for music information retrieval. However, achieving 

satisfactory accuracy in personalized music emotion recogni-

tion for a user is difficult because it requires an impractically 

huge amount of annotations from the user. In this paper, we 

adopt a probabilistic framework for valence-arousal music 

emotion modeling and propose an adaptation method based 

on linear regression to personalize a background model in an 

online learning fashion. We also incorporate a component-

tying strategy to enhance the model flexibility. Comprehen-

sive experiments are conducted to test the performance of the 

proposed method on three datasets, including a new one cre-

ated specifically in this work for personalized music emotion 

recognition. Our results demonstrate the effectiveness of the 

proposed method. 

 

Index Terms— Personalization, music, emotion recog-

nition, MLLR, MAPLR 

 

1. INTRODUCTION 

 

Music emotion recognition (MER) is important as it facili-

tates music organization, indexing, and retrieval based on 

emotion semantic [9], [19], [25]. Most MER systems adopt 

the valence-arousal (VA) emotion plane [14] to describe mu-

sic emotion. Valence (or pleasantness) corresponds to the 

positive/negative affective state, and arousal (or activation) 

indicates the energy and stimulation level of the emotion. 

Since the perceived music emotion may differ from person to 

person, personalized MER (PMER) is needed [4], [7], [26], 

[27]. However, training a PMER model from scratch for a 

user needs a huge amount of annotations from the user [26], 

[27]. A practical personalization method with a reasonable 

annotation load is needed.  

Motivated by the classic paradigm of speaker adaptation 

in speech recognition [5], [13], Wang et al. [20] proposed a 

probabilistic technique that performs personalization by 

adapting a background MER model to a user to reduce the 

annotations required. The background model, which is 

learned from a group of subjects, can be considered a model 

that averages the emotion perceptions of all subjects. This 

technique suggests that exploiting the available background 

model and tailoring it to a specific user is an effective ap-

proach to PMER. 

Instead of using a maximum a posteriori (MAP) estima-

tion method for adaptation, we propose a linear regression 

(LR)-based adaptation method for personalizing the MER 

model. The LR approach is adopted for the following two rea-

sons. First, it has been shown in speech recognition that the 

LR approach works effectively when limited adaptation data 

are available [3], [12]. Second, the LR approach allows the 

incorporation of domain knowledge for component-tying [3] 

to enhance model flexibility. We exploit the fact that songs 

corresponding to neighboring points in the VA plane have 

similar affective characteristics [25] to tie Gaussian compo-

nents in the same VA quadrant.  

The contributions of this paper are twofold. First, we 

develop a novel maximum a posteriori linear regression 

(MAPLR) adaptation method for PMER. Experimental re-

sults show that the proposed method is superior to the previ-

ous MAP method [20] for PMER. Second, we create a new 

dataset, AMG240, for the design and evaluation of PMER al-

gorithms.  

This paper is organized as follows. Section 2 reviews 

prior work on personalized music emotion recognition. Sec-

tion 3 briefly introduces the MER model used in this work. 

Section 4 describes the details of the proposed method. The 

evaluation setup and experimental results are presented in 

Section 5. Finally, Section 6 concludes this paper. 

 

2. PRIOR WORK 

 

The model retraining approach proposed by Yang et al. [22] 

represents one of the first attempts that explore PMER under 

the conventional VA regression framework using support 

vector regression as the predictor. In contrast to the model 

retraining approach, where information of the background 

model is discarded, the two-stage approach described in [23] 

personalize music emotion recognition without retraining. 

The first stage creates the background model for predicting 

the perception of all users, and the second stage predicts the 
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difference (perceptual residual) between the general percep-

tion and a target user. Similar to the probabilistic technique 

[20] discussed earlier, this approach retains the background 

model and enables dynamic adaptation. However, it does not 

model the correlation between valence and arousal and is un-

able to provide the confidence value of each prediction. 
Although its primary focus is on categorical MER, the 

work done by Su et al. [17] falls into the category of PMER 

because it incorporates active learning to minimize user par-

ticipation in the personalization process. However, it is a 

model retraining method, where PMER is formulated as a 4-

class classification problem and the support vector machine 

is adopted to train classifiers for each subject. Because model 

adaption is not considered, this method still requires suffi-

cient personal annotations to train personalized SVMs.  

 

3. THE MER MODEL 

 

Since diverse annotations are collected from different users 

of the same song, the emotion distribution of a song over the 

subjects is often modeled by a Gaussian distribution [15], 

[16], [19], [24]. In this work, we employ the acoustic emotion 

Gaussians (AEG) approach [19] to train our background 

MER model. AEG is a generative approach that uses a mix-

ture of bivariate Gaussian distributions to model the associa-

tion between the music signal of a song and the VA emotion 

values of the song. It is a state-of-the-art method for MER. 

As depicted in Fig 1, a standard AEG model contains an 

acoustic Gaussian mixture model (GMM) {𝐴𝑘}𝑘=1
𝐾  and a VA 

GMM {𝐺𝑘}𝑘=1
𝐾 ,  where K denotes the number of Gaussian 

components. For the acoustic GMM, each component 𝐴𝑘 

represents a certain type of acoustic features and is assumed 

to be associated with a VA (bivariate) Gaussian 𝐺𝑘 in the VA 

GMM. Then, a song’s frame-based acoustic features are 

mapped into a K-dimensional probabilistic vector 𝝅 =
[𝜋1 𝜋2 … 𝜋𝐾] , which contains the posterior probability of 

each component of the acoustic GMM. The vector 𝝅 serves 

as the prior weight for VA GMM to relate the acoustic fea-

tures of a song to the emotion of the song. Therefore, we can 

use ∑ 𝜋𝑘𝐺𝑘
𝐾
𝑘=1  to generate the VA distribution of a song. Fi-

nally, given a set of training songs with their annotations and 

acoustic posterior vectors {𝑋𝑛, 𝝅𝑛}𝑛=1
𝑁 , where 𝑋𝑛 denotes the 

annotations of song n by the subjects, we can learn the mean 

and covariance matrix of each VA Gaussian component using 

the expectation-maximization (EM) algorithm described in 

[1], [19].  

In the prediction phase, AEG provides a mixture of 

Gaussian distributions in the VA plane. If we want to use a 

single Gaussian to represent the predicted emotion of a song 

[19], we can approximate the mixture of Gaussian distribu-

tions with a single Gaussian based on their KL-divergence [6], 

[19]. Moreover, the mean of the single Gaussian can be taken 

as a single point prediction (i.e., a pair of VA values instead 

of a probabilistic distribution), as illustrated in the rightmost 

part of Fig 1. 

 

4. LINEAR REGRESSION FOR MODEL 

ADAPTATION 

 

4.1. Linear regression and component tying 

 

LR-based adaptation methods seek an optimal linear transfor-

mation to update each model parameter when given a set of 

personal data. For VA GMM, ideally we can learn a linear 

transformation for each Gaussian component. However, the 

personal annotations are usually insufficient to learn a trans-

formation for each component individually. Therefore, we 

apply the component-tying strategy to group a number of 

components into a tied-group, and each tied-group shares a 

linear transformation. This strategy alleviates the complexity 

of the LR problem and at the same time increases the gener-

alization ability [12]. 

In this paper, we propose a quad-tied strategy that ties 

the Gaussian components in the same quadrant of the VA 

plane, because many studies have indicated that emotions 

within a quadrant are highly correlated [9], [14], [25] and be-

cause the four quadrants in fact correspond to the four most 

representative emotion semantics [8], [25]. Given a well-

trained background VA GMM with model parameters 𝛬 =
{𝜇𝑘, Σ𝑘}𝑘=1

𝐾 , the parameter update criterion for the mean of 

the 𝑘-th Gaussian is defined as 

𝜇̂𝑘 = 𝑊𝑔 ⋅ 𝑚𝑘 ∈ ℝ2 ,     (1) 

where 𝑊𝑔 = [𝑏𝑔 𝑅𝑔] ∈ ℝ2×3 is the transformation matrix of 

the 𝑔-th tied-group formed by concatenating a translation 

vector 𝑏𝑔 and a rotation matrix 𝑅𝑔, and 𝑚𝑘 = [1 𝜇𝑘
𝑇]𝑇 ∈ ℝ3 

makes the translation possible. We denote each set of tied 

components by 𝒦𝑔,  𝑔 ∈ {1, … , 𝐺}. 

To solve the aforementioned linear regression problem, 

we vectorize the transformation matrix 𝑊𝑔 so that 𝜇̂𝑘 = 𝑀̃𝑘 ⋅

𝑤𝑔, where 𝑀̃𝑘 = 𝐼2 ⊗ 𝑚𝑘
𝑇 ∈ ℝ2×6, ⊗ is the Kronecker prod-

uct, and 𝑤𝑔 = [𝑊𝑔
(1)

, 𝑊𝑔
(2)

]𝑇  concatenates the two rows of 

𝑊𝑔. When 𝐺 = 𝐾, and 𝑘 = 𝒦𝑘, ∀𝑘, the problem is general-

ized to the non-tying case. 

 

4.2. MAPLR 

 

MLLR [12] and MAPLR [2] are two main LR-based methods 

for speaker adaptation. MLLR aims at maximizing the likeli-

hood on the adaptation data with respect to the LR parameters. 

Fig. 1. Illustration of the basic idea of the acoustic emotion 

Gaussian (AEG) approach [19].  
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In contrast, MAPLR performs a Bayesian treatment for 

MLLR that involves the prior distribution of the LR parame-

ter so that the posterior distribution is maximized. Our dis-

cussion below would focus on MAPLR since it is relatively 

more general. 

Given the personal annotations of a subject and the as-

sociated posterior probability vectors, together denoted by 

𝑆 = {𝑥𝑛, 𝝅𝑛}𝑛=1
𝐻 ,  the posterior distribution function 

𝑝(𝑤𝑔|𝑆, 𝛬)~𝒩 is defined by 

𝑝(𝑤𝑔|𝑆, 𝛬) ∝ ∏ ∏ 𝑝(𝑤𝑔)𝐺
𝑔=1

𝑁
𝑛=1 ． 

∑ 𝜋𝑛𝑘|Σ𝑘|−
1

2exp {−
1

2
(𝑥𝑛 − 𝜇̂𝑘)𝑇Σ𝑘

−1(𝑥𝑛 − 𝜇̂𝑘)}𝑘∈𝒦𝑔
,       (2) 

where 𝑝(𝑤𝑔)~𝒩(𝑤𝑔|𝑤̅,  𝜆𝑔 ⋅ 𝐼6) is the prior distribution of 

𝑤𝑔 with 𝑤̅ = [0,1,0,0,0,1]𝑇and precision 𝜆𝑔(instead of vari-

ance). Note that 𝑤̅ represents a non-effective transformation 

for 𝑤𝑔 to keep the adapted model close to the background VA 

GMM, and 𝜆𝑔 plays the role of balancing between the back-

ground model and the personal annotations.  

We employ the EM algorithm to maximize (2) itera-

tively. In the expectation step, we compute the posterior prob-

ability of the 𝑘-th Gaussian component for each personal an-

notation, 

𝛾𝑛𝑘 =
𝜋𝑛𝑘∙𝒩(𝑥𝑛|𝑀̃𝑘𝑤,Σ𝑘)

∑ 𝜋𝑛ℎ∙𝒩(𝑥𝑛|𝑀̃𝑘𝑤′,Σℎ)ℎ
 ,                     (3) 

where 𝑤 = 𝑤𝑔 for  𝑘 ∈ 𝒦𝑔, and 𝑤′ = 𝑤𝑔 for  ℎ ∈ 𝒦𝑔. In the 

maximization step, the updated 𝑤𝑔 is obtained by 

𝑤̂𝑔 = (∑ ∑ 𝛾𝑛𝑘𝑀̃𝑘
𝑇Σ𝑘

−1𝑀̃𝑘 + 𝜆𝑔𝐼6
𝑁
𝑛=1𝑘∈𝒦𝑔

)
−1
． 

(∑ ∑ 𝛾𝑛𝑘𝑀̃𝑘
𝑇Σ𝑘

−1𝑥𝑛 + 𝜆𝑔𝑤̅𝑁
𝑛=1𝑘∈𝒦𝑔

) .               (4) 

The precision 𝜆𝑔 is designed to be data-dependent and is de-

fined by, 

𝜆𝑔 = 𝐶 ⋅ exp {−max (∑ ∑ 𝛾𝑛𝑘𝑘∈𝒦𝑔𝑛 − 𝜏, 0)},         (5) 

where 𝐶 ≥ 0 is a parameter to be determined, max(𝑣, 0) is a 

hinge function, and 𝜏 is set to 5 empirically. As (5) shows, if 

sufficient personal annotations are available and have effects 

on the 𝑔-th tied-group, a large value for ∑ ∑ 𝛾𝑛𝑘𝑘∈𝒦𝑔𝑛  will be 

obtained, leading to a small 𝜆𝑔. Thus, the adaptation learning 

will depend more on the personal annotations. MAPLR re-

duces to MLLR when 𝐶 = 0. 

 

5. EXPERIMENTAL RESULTS 

 

This section describes the dataset, the experimental setup, and 

the experimental results. 

 

5.1. Datasets and acoustic features 

 

A new dataset was created specifically for evaluating the per-

formance of PMER methods. The dataset is referred to as 

AMG240, as it contains 240 diverse music clips that have 

been labeled with discrete mood tags in All Music Guide 

(AMG), a professional music service website. Specifically, 

we retrieved the list of songs associated with 34 AMG mood 

tags [18] and the corresponding 30-second audio previews 

through the 7digital API. This initial set has diverse music 

content. In order to balance the distribution of the songs in 

the VA plane, we used the method proposed in [21] to project 

the 34 tags into the VA plane and randomly picked 60 clips 

from each quadrant according to the VA values of the tags. 

Finally, ten casual subjects were recruited to annotate the VA 

values of all the 240 clips in a silent computer lab. The sub-

jects were well-instructed, and a graphic interface with retro-

spect functions was used to annotate the VA values [22] for 

better annotation consistency. 

We also used two other datasets, MER60 [24] and 

DEAP [10], in the experiments. MER60 is comprised of 60 

pieces of 30-second clips with VA annotations contributed by 

99 subjects, where each clip is annotated by 40 subjects on 

average. However, unlike AMG240, only six subjects com-

pletely annotated all the 60 clips for MER60. Therefore, it 

makes more sense to use MER60 to train a background model. 

On the other hand, DEAP is composed of DEAP120 and 

DEAP40: The former includes 120 pieces of 60-second clips 

with quantized VA values annotated by 14–16 subjects using 

online self-assessment tools, whereas the latter encompasses 

40 pieces of 60-second clips and 32 subjects who annotated 

all of the 40 clips using continuous VA scales in a lab envi-

ronment.  

In addition, we use the MIRToolbox [11] to extract 70 

features encompassing dynamic, spectral, timbre and tonal 

descriptors according to the procedure described in [19].  
 

5.2. Experimental settings and evaluation criteria 

 

Since AMG240 and MER60 were collected by similar means 

(the ranges of VA values are [-1, 1]) while DEAP40 and 

DEAP120 have more in common (the VA values are both in 

the range of [1, 9]), the following two experimental settings 

were adopted. First, we used MER60 for training the back-

ground model and AMG240 for evaluating PMER. Because 

AMG240 has abundant personal annotations, we performed 

4-fold cross-validation for PMER that uses 3 folds for testing 

and one fold for adaptation. Second, DEAP120 is used to 

train the background model, and 5-fold cross-validation is 

performed on DEAP40, one fold for testing and 4 folds for 

adaptation. For both experiments, we repeated the PMER 

evaluation for five times, each with a different random per-

mutation to divide the folds. There was no overlap between 

the training, adaptation, and testing sets. 

We adapted the background VA GMM in an incremen-

tal manner to evaluate the performance of PMER. At each 

iteration, we added four more randomly selected personal an-

notations from the training set to the adaptation pool, which 

was then used to adapt the background model until all the 

training data were used. Finally, the accuracy was computed 
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in each iteration and averaged over all subjects and repeti-

tions. Note that all the methods were tested under the same 

experimental settings described above. 

The prediction results were evaluated in two ways. First, 

we calculated the log-likelihood (LL) [20] of the ground truth 

annotation on the predicted single VA Gaussian and evalu-

ated the accuracy of both the predicted mean and covariance. 

Larger LL represents better performance. Second, we meas-

ured the Euclidean distance (ED) [15], [19] between the 

ground truth annotation and the mean vector of the predicted 

VA Gaussian. Smaller ED corresponds to better accuracy. 

 

5.3. Experimental results 

 

We compared the performance of the three model adaptation 

methods, MAP, MLLR and MAPLR, using MAP as the base-

line [20]. Figures 2 and 3 show the results on AMG240 and 

DEAP40, respectively. The following observations can be 

made. First, the results clearly show that MAPLR outper-

forms MAP except for some cases with scarce adaptation data 

on DEAP40. Second, MLLR suffers from over-fitting when 

very few adaptation data are used. See, for example, the case 

with 4 annotations. On the contrary, thanks to the Bayesian 

treatment, MAPLR reduces the risk of over-fitting and exhib-

its better generalization ability. Accordingly, MAPLR out-

performs MLLR when adaptation data are scarce. Third, 

MAPLR and MLLR perform similarly on DEAP40 when the 

adaptation data are abundant. This is because that the factor 

𝜆𝑔  is designed to decay rapidly once sufficient adaptation 

data are available. In contrast, the baseline method MAP is 

less flexible; its performance on both datasets is excessively 

influenced by the background model even when plentiful ad-

aptation data are used.   

To gain more insights into the capability of MAPLR, we 

showcase two train/test data pairs selected from the first ex-

periment, which uses AMG240 as the test data. Fig. 4 shows 

the distributions of the background model on MER60, the test 

annotations of two subjects on the test set of AMG240, and 

their personalized models learned from the training annota-

tions. We can see that the Gaussian components of the back-

ground model (cf. Fig 4 (a)) generally spread over the VA 

plane but somewhat closer to the origin. For Subject #1, the 

background model appears conservative since the annotation 

distribution (cf. Fig. 4 (b)) is more diverse, covering even the 

boundaries of the VA plane. By learning from the adaptation 

data, our method drives the Gaussian components of the 

background model towards the boundaries and forms a new 

personalized VA GMM (cf. Fig. 4 (c)) covering a larger area 

of the plane. For subject #2, we can see that the personalized 

model (cf. Fig. 4 (e)) adapts well and performs well in pre-

dicting the ground truth distribution of the test set (cf.  Fig. 4 

(d)). 

 

6. CONCLUSIONS 

 

In this paper, we have proposed an LR-based model adapta-

tion method to personalize a background MER model in an 

online fashion. We have also provided empirical evidences to 

show the effectiveness of the proposed method. The proposed 

method works effectively across a wide range of available 

data for adaptation and is particularly useful when only a lim-

ited amount of adaptation data are available from the user. 
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Fig. 3. The performance of personalized music emotion recog-

nition evaluated on DEAP40. 

Fig. 2. The performance of personalized music emotion recogni-

tion evaluated on AMG240.  
(a) 

(b) (c) 

(d) (e) 

Fig. 4. Qualitative illustration of the performance of PMER. (a) The 

background VA GMM trained with MER60, where each ellipse 

stands for a Gaussian component. (b) Distribution of the test anno-

tations labeled by Subject #1 in AMG240, where each circle corre-

sponds to the VA annotation of a song. (c) VA GMM personalized 

by MAPLR with 16 annotations labeled by Subject #1. (d) Distri-

bution of the test annotations labeled by Subject #2 in AMG240. (e) 

VA GMM personalized by MAPLR with 16 annotations labeled by 

Subject #2. 
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