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ABSTRACT

This paper presents an intra-note segmentation method for mono-
phonic recordings based on acoustic feature variation; each musi-
cal note is separated into onset, steady and offset states. The task
of intra-note segmentation from audio signals is detecting change
points of acoustic feature. In proposed method, the Markov pro-
cess is assumed on state transition, and time-varying acoustic fea-
ture is represented by three Dirichlet processes (DP) that are emit-
ted by the each state. In order to express the generative process, the
sticky hidden Markov model (HMM) with DP emission is employed.
This modeling allows us to automatically estimate the state transition
while avoiding the model selection problem by assuming countably
infinite of possible acoustic feature in musical notes. Experimen-
tal result shows that the detection accuracy of onset–to–steady and
steady–to–offset were improved 2.3 points and 20.7 points from pre-
vious method, respectively.

Index Terms— intra-note segmentation, music information re-
trieval, hidden Markov model, Dirichlet process

1. INTRODUCTION

Musicians do not play exactly what is written in the score because
they interpret the music in their own way. Deviances, such as vibrato
or rubato, are included in the tempo, amplitude, timbre and pitch in
their performance. These deviances are among the factors that make
a listener judge a performance as “expressive” and/or “individual”.
Hence, more or less musical applications [1, 2, 3] require under-
standing players’ performance expression/intention. For this reason,
many attempts of analyzing and modeling its have been made up to
this day [4, 5, 6, 7, 8, 9, 10, 11, 12].

A musical tone generally has three possible states: onset, steady,
and offset. In particular, “local deviances” in each note (e.g. vibrato
or articulation) have different performance effects depending on the
states. For example, if a player uses fast vibrato at around onset
timing (i.e. onset state), the vibrato effects “accent” called as “vi-
brato accent”. Thus, as a pre-processing for musical performance
analysis, we need to deal with intra-note segmentation; a musical
tone is needed to be separated into the three states. As an applica-
tion example of intra-note segmentation, a timbre model of musical
instruments is proposed [13].

As literatures on this subject, methods based on collinear ap-
proximation of amplitude variation with the decided number of
straight lines were proposed [14, 15]. In these methods, the states
are estimated via gradient of these straight lines. However, because
observed amplitudes have various shapes depending on musical
expression, complex amplitude variations of excitation-continuous
musical instruments (e.g. wind instruments or bowed strings) with

including vibrato or tremolo could not be approximated by the
decided number of straight lines.

In this paper, we propose more flexible intra-note segmentation
for excitation-continuous musical instruments based on sticky hid-
den Markov model (sticky HMM) with Dirichlet process (DP) emis-
sion [16]. In the proposed method, countable infinite acoustic vari-
ations are considered in the three states. The state transition is de-
tected by clustering of observed acoustic features.

In section 2 we begin by describing acoustic characteristics of
each state. In section 3, generative model of intra-note segments is
described and section 4 describes inference of these states. Finally,
the experimental result is presented in section 5.

2. ACOUSTIC CHARACTERISTICS OF EACH STATE

Onset, steady and offset states are sectionalized depending on dif-
ference in vibration of excitation source. The task of intra-note seg-
mentation from audio signals is detecting change points of acoustic
feature due to the excitation differences. Figure 1 shows an example
of the differences in acoustic features on violin recordings.

The onset state is the interval between onset timing1 and stabiliz-
ing timing of excitation source. As acoustic features, the amplitude
is increased on almost instruments and playing styles [17, 18]. More-
over, in a part of playing style, the timbre becomes like a “noise” due
to instable vibration of excitation source (Fig. 1 (b)).

Unified definition of steady state is quite difficult because not
all instruments contain the same temporal events. In this paper, the
steady state is defined as almost constant interval of acoustic fea-
tures. When the note is played with vibrato or some playing style,
acoustic feature changes at around the constant value.

The offset state is the interval between exit timing of the excita-
tion control and offset timing2. As acoustic features, the amplitude
decrease rapidly and high-level harmonics decrease gently (Fig. 1
(a)).

3. GENERATIVE MODEL OF INTRA-NOTE SEGMENTS

In this section, we introduce a generative model of intra-note states
and acoustic features. In the following, t is index of time frame
and xt is amplitude at time t dealt in log-domain (dB). Further,
N ,W,M,D,Ber and Bin denote Gaussian, Wishart, Multinomial,
Dirichlet, Bernoulli and Binomial distribution, respectively.

1Start timing of the note.
2Timing that the note becomes imperceptible.
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Fig. 1. Examples of acoustic characteristics of each state (top: am-
plitude, bottom: spectrogram). A normal tone (a) and a strong tone
(b) played with the violin. In each top figure, dotted line denotes
the onset state, solid line denotes the steady state and dashed line
denotes the release state.

3.1. Acoustic feature for intra-note segmentation

As above mentioned, acoustic features that varies depending on the
states are mainly amplitude and timbre. Hence, in this study, acous-
tic feature related with amplitude and timbre are used for the seg-
mentation.

The amplitude is characterized with time-variation such as in-
crease or decrease. Therefore, we use first-order differentiation of
the amplitude, ∆xt = (xt−xt−1)/∆t, as amplitude characteristics.
This is consistent intuitively to ADSR (Attack Decay Steady/Sustain
Release) that is a generative model of amplitude which expressed ex-
plicitly intra-note segment. ADSR expresses amplitude modulation
with some (decided number of) straight lines or curves.

The timbre is characterized with aperiodicity and harmonic ra-
tio. Hence, the spectral entropy [19] and low-dimensional features of
spectrum envelope are used for aperiodicity and harmonic ratio, re-
spectively. In order to express spectral envelope in low-dimensional,
spectral envelope is deemed as probability density function, and 1st

to 4th order moments are calculated [20]. Then, the principal com-
ponent analysis (PCA) is executed to calculated spectral entropy and
the moments, and then the top 3-dimensions (c1, c2, c3) are selected
due to contribution ratio.

From the above, yt = (∆xt, c
1
t , c

2
t , c

3
t )

† is employed as acous-
tic feature. Here, † denotes transpose of vector or matrix.

3.2. Generative model of acoustic features

The actual amplitude and timbre in a musical note are time-varying
due to various factors such as vibrato or playing style. The time-
varying is closely related to performance expression. Therefore, in
order to express the every variation of performance, it is not valid-
ity to fix the complexity of the model, like the ADSR and previous
methods [14]. The complexity of the model should be decided ac-
cording to the complexity of the observed acoustic feature.

Meanwhile, the number of intra-note state is generally three. In
some playing style such as legato, there are cases that some state
vanish. Though, in any playing style, there are no cases that the
number of state is increase from three. Therefore, the complexity of
the observed acoustic feature should be considered under the state
transition.

For these reasons, we employ hierarchical generative process of

Fig. 2. A graphical representation of a sticky HDP-HMM with
nested DP emission for intra-note segmentation.

the states and acoustic features. Namely, first, players generate tran-
sition of the K = 3 states. Next, the players select acoustic feature
patterns from infinite number of own acoustic candidate (Jk → ∞)
on each state, and then the player generate a musical tone by com-
bining the selected acoustic feature patterns.

In order to represent the process as statistical model, we em-
ploy sticky HMM with nested DP emission [16] (Fig. 2). In this
model, the acoustic feature at t, yt, is generated by infinite Gaussian
Mixture Model (infinite-GMM)

∑Jzt
j=1 ψzt,jN (µzt,j ,Λ

−1
zt,j

) corre-
sponding to the state zt. This model is similar to the Infinite-State
Spectrum Model presented by Nakano et al. [11] in terms of at-
tempting to express time-varying acoustic feature by infinite number
of patterns. Whereas Nakano expressed the time-varying by HMM
directly, we attempt to model the state explicitly and express transi-
tion of infinite mixture distribution.

Here, we describe generative process of acoustic features
y1,...,T . First, intra-note state at t, zt, is generated by Multino-
mial M(πzt−1). The parameter of the Multinomial πk denotes
state transition probability of state k to the next state. And its prior
distribution is its conjugate distribution, Dirichlet distribution, as
follow:

πk ∼ D (αβ(Z1), ..., αβ(k)+κ, ..., αβ(ZK)) , (1)
β ∼ D (γ/K, ..., γ/K) . (2)

Here, κ > 0 is a parameter for self–transition bias, and α, γ > 0 are
hyper parameters.

Next, indicator of Gaussian at t, st, is determined by Multino-
mial M(ψzt). The parameter of the Multinomial ψk is mixture
weight of kth states’ infinite-GMM, and the weight is generated by
Stick-breaking process [21] with a parameter ς > 0.

Finally, acoustic feature at t, yt, is generated by sth
t Gaussian on

state zt, N (µzt,st ,Λ
−1
zt,st) with parameters Θk,j = {µk,j ,Λk,j}.

In this study, we employ nested DP [22], and prior distribution of
each Gaussians’ parameters is Gaussian-Wishart distribution with
parameters Hk = {λk, Rk,Wk, νk}.

4. STATES INFERENCE

In this section, we describe the inference for intra-note states z1,...,T .
Latent variables of DP can be inferred by Variational Bayesian meth-
ods (VB) or Markov chain Monte Carlo methods (MCMC). Because
the proposed model is quite complex, it is difficult to use determinis-
tic procedures such as VB. Instead, we use Gibbs sampler to update
latent variables. The basic algorithm is same as the literature [16],
thus we abbreviate its derivation and describe its algorithm and up-
date formulas.
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4.1. Parameters inference with Gibbs Sampling

The latent variables are iteratively drawn from their conditional pos-
terior distributions. The sampling order is zt, st,β, α, κ, ς and Hk.

Step 1: zt and st are drawn from following conditional posterior:

zt ∼
K∑

k=1

fk(yt)δ(zt, k), (3)

st ∼
J∑

j=1

f ′
zt,j(yt)δ(st, j) + f ′

zt,Jzt+1(yt)δ(st, Jzt + 1), (4)

where

fk(yt) =
(
αβk + n−

zt−1,k

)
×(

αβz+1 + n−
k,zt+1

+ κδ(k, zt+1)

α+ n−
k,· + κ

)
Jk∑
j=1

N (yt|µ̂k,j , Λ̂
−1
k,j),

(5)

f ′
zt,j(yt) =

(
m−

zt,j

ς +m−
zt,·

N (yt|µ̂zt,j , Λ̂
−1
zt,j

)

)
, (6)

f ′
zt,Jzt+1(yt) =

(
ς

ς +m−
zt,·

N (yt|µ̂zt,Jzt+1, Λ̂
−1
zt,Jzt+1)

)
. (7)

Here, nk,k′ represents the number of Markov chain transition from
state k to k′,mk,j represents the number of active count of jth Gaus-
sian on state k, superscript “−” denotes removing information of yt,
“·” denotes summation of its variable and δ(i, j) is Kronecker delta.
Here, µ̂zt,j and Λ̂zt,j are drawn from following equations:

µ̂zt,j ∼ N

(
ȳ−
zt,j

Λ̂zt,j+λztRzt

m−
zt,j

Λ̂zt,j+Rzt

,
(
m−

zt,j
Λ̂zt,j+Rzt

)−1
)
,

(8)

Λ̂zt,j ∼ W
((
νztWzt +Φ−

zt,j

)−1
, νzt +m−

zt,j

)
, (9)

ȳk,j =
∑

t′∈(zt=k,st=j)

yt′ , (10)

Φk,j =
∑

t′∈(zt=k,st=j)

(yt′ − µ̂zt,j)(yt′ − µ̂zt,j)
†. (11)

Please note that in mean variable of Gaussian distribution of equa-
tion (8), inverse matrix is written by division due to limitations of
space. After sampling for all t ∈ 1, ..., T , if there exist a j such that
mzt,j = 0, remove j and decrease Jzt .

Step 2: Sampling β. State transition inference of a sticky HMM
is not Chinese Restaurant Franchise (CRF), but that is CRF with
Loyal Customers [23]. Thus, β is drawn by using auxiliary random
variables q, r, q̄ as following:

qk,k′ =

nk,k′∑
i=1

ui, ui ∼ Ber
(

αβk′ + κδ(k, k′)

i+ αβk′ + κδ(k, k′)

)
(12)

rk ∼ Bin
(
qk,k,

ρ

ρ+ βk(1− ρ)

)
, (13)

q̄k,k′ =

{
qk,k′ (k ̸= k′),
qk,k′ − rk (k = k′),

(14)

β ∼ D (q̄·,1, q̄·,1, ..., q̄·,K) , (15)

Fig. 3. An example of state adjustment. Estimated state zt (a), ad-
justment pattern 1 (b) and adjustment pattern 2 (c).

where ρ = κ/(α+ κ).

Step 3: Smpling hyper-parameters α, κ, ς and Hk. Sampling equa-
tions of α, κ and ς are omitted since become redundant, but the algo-
rithm is same as the [16]. Hk is sampled via infinite-GMMs’ method
[24] by using yt ∈ zt = k.

If the iteration count reaches the appointed number, the iteration
is exited. Otherwise, the algorithm returns to step 1.

4.2. Post-processing for zt

State transition in a musical note is a Left-to-Right automaton in-
cluding state skips. However, the sticky HMM is ergodic HMM, thus
there are some cases of state “backset”, such as “onset → steady →
onset” (Fig. 3 (a)). In these cases, zt is adjusted by post-processing.

Let us consider P patterns of adjustable state transition ẑpτ in
time interval τ ∈ {t1, ..., t2} (e.g. In Fig. 3, ẑ1τ =(b), ẑ2τ =(c) and
P = 2)．When HMM parameters Υ = {πk,ϕk,Θk} are given, the
likelihood of each pattern can be written as follow:

p(ẑpτ ,yτ |Υ) =

t2+1∏
τ=t1

πz
p
τ−1,z

p
τ

J
z
p
τ∑

j=1

ψz
p
τ ,jN (yτ |µz

p
τ ,j ,Λ

−1

z
p
τ ,j

). (16)

In this paper, zt is adjusted via ẑpτ that maximize equation (16).
Figure 4 shows an result example of intra-note segmentation

whose musical note is played by the violin (468Hz). Although esti-
mated state transition has a little difference with the true state tran-
sition, the estimated error is less than about 20 ms. Moreover, time-
variation of acoustic feature is represented by (

∑
K Jk =)11 Gaus-

sians.

5. EXPERIMENT

This section presents the experimental result of proposed method on
actual musical recordings. For the experiment data, three phrases
(saxophone, clarinet and trumpet) from Music Information Retrieval
Evaluation eXchange (MIREX) onset detection dataset [25], two
phrases (flute and trumpet) from RWC Music Database (jazz mu-
sic) [26] and five phrases from a database of solo violin recordings
[12] were used. The reason of this selection is these data includes a
variety of playing style on classic and jazz. All musical note were
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Fig. 4. An result of intra-note segmentation. Acoustic feature (a),
true state transition (b), estimated state transition (c) and mixture
number (d). In (b), (c) and (d), dotted line denotes the onset state,
solid line denotes the steady state and dashed line denotes the release
state.

separated into each note by hand-labeling of onset timings and off-
set timings. There were 349 musical notes in total. All signals were
processed as monaural signals sampled at 48 kHz and 24 bit. The
correct labels are generated by mean of three musicians’ hand la-
beling result that are based on audio signal, fundamental frequency,
spectrogram and amplitude.

For acoustic feature calculation, temporal shift and window
length of Short-Time Fourier Transform (STFT) are 1 ms and 20
ms, respectively. The hyperparameters of α, κ and ς in [16] were
set to a, b, c, d = 1. Gaussian indicator st was initialized by ran-
dom value with Jk = 30. To ensure the numerical stability of
the algorithm, we placed the initial value of zt as z1,...,T/4 = 1,
zT/4+1,...,3T/4 = 2 and z3T/4+1,...,T = 3. Appointed number of
max iteration was 1000.

5.1. Experiment for intra-note segmentation

The accuracy of proposed intra-note segmentation was compared
with a previous method [14] via precision. In intra-note segmen-
tation, a musical note is separated into three states, thus the accuracy
was evaluated on detected state transition time of onset–to–steady
(A–to–S) and steady–to–offset (S–to–R). In S-to-R, there was sig-
nificant difference by the 2-sample test for equality of proportions
(significance levels were 1 % ). Correct matches imply that the target
and detected onsets were within a 50-ms window [17]. This window
is to allow for the inaccuracy of the hand labeling process.

Figure 5 shows the result of segmentation accuracy. The accu-
racy of proposed method was 2.3 point and 20.7 point higher than
the previous method, A–to–S and S–to–R respectively. The previ-
ous method is employed at performer identification [1, 2] and timbre
modeling [27], and proposed method can segmentation sophisticat-
edly than the previous one on excitation-continous musical instru-
ments note. Thus, it can be concluded that the proposed method is

Fig. 5. Evaluation result. “A–to–S” and “S–to–R” denote change
point of “onset state to steady state” and “steady state to offset state”,
respectively.

efficient for pre-processing of musical performance analysis.

6. CONCLUSIONS

In this paper, we proposed a flexible intra-note segmentation for
excitation-continuous musical instruments based on sticky HMM
with DP emission. In the method, we assumed that players perform
a musical note by selecting and combining acoustic feature from
countable infinite variations in each state. The state transition was
detected by clustering of observed acoustic features. Experimen-
tal result shows that the detection accuracy of onset–to–steady and
steady–to–offset were improved 2.3 point and 20.7 point from previ-
ous method, respectively. The previous method is employed at per-
former identification and timbre modeling, and proposed method can
segmentation sophisticatedly than the previous one on excitation-
continous musical instruments note. Thus, it can be concluded that
the proposed method is efficient for pre-processing of musical per-
formance analysis.

In this study, the issue of state “backset” due to ergodic property
of HMM was resolved by post-processing. Meanwhile, by constrict-
ing the transition probability matrix πk as upper triangular matrix,
the post-processing can be omitted. Moreover, it can be consider
that, this constraint can improve inference accuracy of emission dis-
tribution of acoustic feature on each state. In the future, we are going
to derive the constraint version of update equations.

In fact, there are two causes of amplitude time-varying: articu-
lation and dynamics (e.g. crecendo). This study only considered the
cause of articulation. Thus, in future, we need to consider prelimi-
narily removing or statistical modeling of effect of the dynamics

As future prospects, it can be considered that the inferred HMM
parameters Υ = {πk,ϕk,Θk} and indicator s1,...,T can be re-
garded as analyzing result of performance style characteristics.
Thus, we will attempt to apply it for performance modeling or
performer identification.
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