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ABSTRACT
Bagging is one the most classic ensemble learning techniques in the
machine learning literature. The idea is to generate multiple sub-
sets of the training data via bootstrapping (random sampling with
replacement), and then aggregate the output of the models trained
from each subset via voting or averaging. As music is a temporal
signal, we propose and study two bagging methods in this paper: the
inter-song instance bagging that bootstraps song-level features, and
the intra-song instance bagging that draws bootstrapping samples
directly from short-time features for each training song. In particu-
lar, we focus on the latter method, as it better exploits the temporal
information of music signals. The bagging methods result in sur-
prisingly effective models for music auto-tagging: incorporating the
idea to a simple linear support vector machine (SVM) based sys-
tem yields accuracies that are comparable or even superior to state-
of-the-art, possibly more sophisticated methods for three different
datasets. As the bagging method is a meta algorithm, it holds the
promise of improving other MIR systems.

Index Terms— Bagging, ensemble classification, sparse cod-
ing, feature pooling, music auto-tagging

1. INTRODUCTION

As the number of digital music continues to grow, recent years have
witnessed growing interest in developing auto-tagging systems that
label a song according to the music content [1–9]. The goal of such
systems is to help users search for music using tags such as genre,
emotion, or instrumentation, while reducing the effort in manually
labeling music. With music tags, users can query music via natural
language, tag list, or tag cloud [10–13].

Due to the so-called semantic gap between audio signals and
music tags, music auto-tagging is still considered challenging [6]. In
this paper, we propose a novel ensemble learning algorithm called
intra-song instance bagging for music auto-tagging. Our strategy is
to improve the capability of classification by incorporating the idea
of bootstrap aggregating (bagging) [14] and adapt it to handle music
signals. Typically, ensemble classification will lead to better per-
formance if certain diversity can be taken into account by the mul-
tiple base classifiers [15]. As opposed to the “inter-song” counter-
part that aggregates models trained from song-level features, intra-
song instance bagging diversifies the feature samples by bootstrap-
ping short-time instances from each training song. While we expect
that the intra-song method better capitalizes local musical informa-
tion since information loss inherent to song-level features is avoided,
both the inter- and intra- song methods inherit the advantages of
bagging [14] in improving the stability of machine learning mod-
els and in reducing the risk of overfitting. According to our perfor-
mance study, the intra-song method outperforms the inter-song one

and leads to stat-of-the-art accuracies on three auto-tagging datasets,
encompassing CAL500, MajorMiner and CAL10k [16–18]. Despite
the bagging idea is relatively simple, it is easy to implement and
constitutes a competitive alternative in building MIR models.

The paper is organized as follows. We briefly describe some
related work in Section 2 and then present the proposed method in
Section 3. We report a comprehensive performance study covering
the three datasets in Section 5 and conclude in Section 6.

2. RELATED WORK

Ensemble classification has been adopted and shown effective in
many MIR systems. For instance, the winning solution [19] of the
audio tag classification task (i.e. auto-tagging) of Music Information
Retrieval Evaluation eXchange (MIREX) 2009 used heterogeneous
model averaging to combine support vector machine (SVM) and Ad-
aBoost. Meta learning algorithms such as random forest have also
been adopted in a variety of MIR problems including genre classi-
fication, mood classification and auto-tagging [4, 8, 20–22]. Most
of the existing methods adopt the inter-song strategy. In contrast,
relatively little attention has been made to the intra-song variant.

The bagging technique was first proposed by Breiman [14]. It
is a simple method that uses multiple training subsets for improving
the stability of an ensemble system. It is one of the most impor-
tant components behind popular machine learning algorithms such
as random forest and rotation forest [23, 24]. Although the idea of
bagging and its variants have been applied in a variety of pattern
recognition problems including MIR, this work represents an early
attempt that discusses the difference between inter-song and intra-
song instance bagging for MIR problems, to our best knowledge.

3. METHODOLOGY

3.1. The “multi-tag classifier” framework

Music auto-tagging is usually formulated as a multi-label classifica-
tion problem [25]. We follow one of the state-of-the-art frameworks
that uses the binary relevance scheme together with the classifier
stacking technique [4, 26, 27]. Binary relevance applies an indepen-
dent binary classifier for modeling each tag [1–4, 27]. On the other
hand, classifier stacking arranges a second layer of binary classifiers
to combine the output scores of the first layer classifiers, so that the
association between any pair of tags can be modeled [26, 27]. Clas-
sifier stacking also complements the tag independence assumption
of the binary relevance scheme. We call the abovementioned frame-
work a “multi-tag classifier,” which is able to generate a series of
probabilities for multiple tags, where each probability can be viewed
as the affinity between a song and a tag. When annotating a test song,
the tags with highest affinities will be selected.
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3.2. Non-bagging versus bagging

Suppose we are given a tagged music training set with N songs, D =
{Xi,yi}Ni=1. For the i-th song, yi ∈ {0, 1}L is the binary multi-tag
label, L is the number of tags, and Xi = {xi1, . . . ,xiτi} represents
the set of intra-song instances, where xij ∈ R

M is a short-time
(e.g., frame-level or segment-level) feature vector of length M , and
τi denotes the number of instances.

For a conventional non-bagging auto-tagging method, one ex-
ploits all the information of D to train a single multi-tag classifier.
A typical way is to first pool (temporally aggregate) each Xi across
time into a feature vector si ∈ R

M based on all components of Xi,
leading to F = {si,yi}Ni=1, and then train the multi-tag classifier
f : RM �→ R

L using the whole F . In Section 4.3 we will present
the details about the pooling methods considered in this work; the
basic idea is to aggregate short-time feature vectors of a song into a
song-level feature vector for classification [28].

To incorporate the bagging scheme, we can perform bootstrap
sampling on D to generate a number of K training subsets Dk, in
which each is used to train the k-th “base multi-tag classifiers” fk.
For a test signal, the decisions from the base multi-tag classifiers are
combined to give the final result, e.g., 1

K

∑K
k=1 fk. Two bagging

strategies are explored below, namely, inter-song instance bagging
and intra-song instance bagging.

3.3. Inter-song instance bagging

Inter-song instance bagging is operated upon F but partially exploits
F to train a base multi-tag classifier at a time. Specifically, we can
bootstrap either subsets of songs (i.e., Fk ⊆ F) or subsets of fea-
tures (i.e., Fk = {ŝi,yi}Ni=1, ŝi ⊆ si) to train the K number of base
multi-tag classifiers. Both bootstrap schemes have been adopted in
the literature [20–22,29]. We consider the former variant (i.e., boot-
strapping subsets of songs) in this paper, in order to focus on the
effect of bagging rather than the features.

3.4. Intra-song instance bagging

In contrast, intra-song instance bagging is applied to the short-time
features {xi1, . . . ,xiτi} for each training song. As Algorithm 1
presents, we perform the bootstrap directly on D (instead of F ) for
K times, and each time executes the following procedures. For the
i-th song, we uniformly sample �qτi� intra-song instances (q is the
sampling percentage) and pool the instances into a feature vector
vk
i ∈ R

M until all the training songs are done. Then, we train the k-
th base multi-tag classifier fk based on Dk = {vk

i ,yi}Ni=1. Because
Algorithm 1 performs bootstrap on D, it is possible that Dk′ = Dk

for k �= k′.
In the test phase, we perform the same bootstrap procedures for

a given song X̂ to obtain K feature vectors {v̂k}Kk=1 and then gen-

erate the affinity as 1
K

∑K
k=1 fk(v̂

k). Clearly, the method reduces
to the non-bagging scheme when K = 1 and q = 1.

The major difference between inter- and intra-song bagging lies
in the input to the base multi-tag classifiers. The former uses a fea-
ture vector pooled from the entire song, whereas the latter uses a fea-
ture vector pooled from a random subset of intra-song short-time fea-
ture vectors for each song. In other words, the inter-song method per-
forms bootstrapping after pooling, whereas the intra-song method
performs bootstrapping before pooling. Because of this difference,
the intra-song method better capitalizes diverse subsets of instances
from a song, which might in turn help the modeling of local events
such as “guitar solo” [16] within a song.

Algorithm 1: Intra-song instance bagging

Input: Training data D = {Xi,yi}Ni=1; number of base
multi-tag classifiers K; sampling percentage q;

Output: Ensemble of multi-tag classifiers {fk}Kk=1

1 for 1 ← k to K do
2 for 1 ← i to N do
3 Φ ← uniformly sample �qτi� intra-song instances

from Xi;

4 vk
i ← pool Φ into a vector;

5 end
6 Dk ← {vk

i ,yi}Ni=1;

7 fk ∈ R
L ← train a base multi-tag classifier on Dk;

8 end

For each music clip
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Fig. 1: Feature extraction pipeline for audio word feature [32].

3.5. Implementation details

We used the linear SVM implemented in the LIBLINEAR library
[30] for a binary classifier in the multi-tag classifier framework. It
has been shown that linear SVM has comparable prediction perfor-
mance to non-linear SVM but better efficiency when the feature di-
mension is large and sparse (e.g., [29, 31–33]). However, as each
binary classifier is trained independently, directly averaging the out-
puts of different base multi-tag classifiers for ensemble classification
might be sub-optimal. Instead, for a binary classifier in a multi-tag
classifier, we used the training data to train a sigmoid function that
transforms the raw output score into a probability estimate [4,29,34],
and aggregated the probability estimates for final decision.

4. FEATURE REPRESENTATION

The following two state-of-the-art audio feature representations were
considered in our study — audio word and EchoNest features.

4.1. Audio word representation (AW)

AW is a text-like representation of music that has been found effec-
tive for many MIR problems in recent years [31–33]. We show the
extraction pipeline in Figure 1 and present some details below.

Spectrogram extraction transforms the time domain music sig-
nal into log-powered spectrum for each short-time frame. We used
46ms frame size with 50% overlaps, following [31].

Multiple frame concatenation (MFR) concatenates successive
η frames into a feature vector to better incorporate temporal infor-
mation of a music signal [7,33]. We used η = 4 with 50% overlaps,
following a prior art [33].

PCA whitening is another simple trick that improves the perfor-
mance of a feature learning system [7, 28, 33]. It refers to applying
principle component analysis (PCA) to the low level representation
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before sparse coding. We selected the number of principle compo-
nent so that 90% of variance is maintained. We use z to denote the
log-powered spectrum after MFR and PCA whitening.

Sparse coding has been found a more effective way of comput-
ing AW, in comparison to competing methods such as vector quanti-
zation methods [7,31]. Given an input vector z ∈ R

m and a pre-built
dictionary D ∈ R

m×k, it computes the audio word representation
α∗ ∈ R

k (for each frame) via

α∗ = argmin
α

‖z−Dα‖22 + λ‖α‖1 . (1)

As a result, α∗ is a k-dimensional vector with a few non-zero terms
that as a whole well approximates the input vector z. The param-
eter λ is a trade-off between sparsity term and reconstruction error.
We set λ = m−1/2 following [35] and used the LARS-LASSO al-
gorithm [36] to solve Eq. 1. The resulting α∗ is adopted as the
short-time feature xij for some datasets (cf. Section 5.1).

Dictionary learning. As can be seen from Eq. 1, the dictionary
D plays an important role in computing AW. It has been found that
learning a dictionary from data usually leads to better performance
[31]. In this work, we used the online dictionary learning (ODL)
algorithm [35] to learn the dictionary from USPOP2002, an external
dataset composed of nearly 7,000 contemporary pop music [37].

4.2. EchoNest feature

Features computed by the EchoNest API (http://echonest.
com/) has been widely used in MIR in recent years [18, 38, 39].
We employed the EchoNest API to compute segment-level 12-D
timbre descriptor (ENT) and 12-D pitch descriptors (ENP), and used
the concatenation of them as another type of short-time feature xij .
ENT describes the timbre characteristics of the magnitude spectro-
gram, whereas ENP is chroma-like [40]. The features of a song
are not in the frame-level but in the segment-level computed by the
EchoNest API, where each segment corresponds to an acoustically
homogenous fragment with multiple consecutive frames. Please
note that the EchoNest features can be obtained by querying the API
with song titles and artist names, so audio files are not needed.

4.3. Temporal aggregation

Temporal aggregation is a process that pools short-time feature vec-
tors of a song into a song-level feature vector for classification [28].
Different methods were adopted for the two features in this work.
Since AW is a histogram-like feature, we used sum pooling and
normalized it by sum-to-one normalization and square-root power
normalization, following [41]. On the other hand, we pooled the
EchoNest features by calculating the mean and standard divination
along the temporal dimension, and then took the z-scores for feature
normalization along each feature dimension.

5. EXPERIMENT

5.1. Dataset and evaluation protocol

We evaluated the performance of auto-tagging using the following
three datasets to ensure the result is generalizable.

CAL500 contains 502 western popular music manually anno-
tated with a lexicon of 174 pre-defined tags [16]. The length of a
music audio clip ranges from 3 second to over 22 min. According
to the common protocol in the literature [7], we used a subset of 97
tags and evaluated the performance for both semantic annotation and
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Fig. 2: The per-tag retrieval performances on the three datasets. The
baseline method is represented by a dashed line. The solid lines with
different colors show the performances of the proposed intra-song
instance bagging with different Ks.

retrieval. The accuracies of annotation (i.e., annotating a song with
tags) and retrieval (i.e., retrieving relevant songs with respect to a tag
query) were evaluated in terms of F-score and the area under the re-
ceiver operating characteristic curve (RAUC), respectively [16]. We
used AW as the feature representation for this dataset.

MajorMiner was crawled from the MajorMiner.org web-
site [17]. Therefore, it may be slightly different from the one
used in the MIREX auto-tagging task. It contains 2,472 music clips
annotated over 45 tags, with each audio clip being 10 sec long.
Following the setup of MIREX, we used three-fold cross validation
to evaluate the performance in terms of per-song annotation AUC
(AAUC) and per-tag retrieval AUC (RAUC) for the semantic anno-
tation and retrieval tasks, respectively. For feature representation,
AW is used for this dataset.

CAL10k consists of 10,870 partially annotated songs over a lex-
icon of 1,053 tags by expert music editors of the music service com-
pany Pandora (http://www.pandora.com) [18]. In this work,
we only considered the 153 genre tags defined by Tingle et al. [18].
Due to the copyright issues, the audio clips for this dataset are not
available. Therefore, we used the EchoNest feature as the feature
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Table 1: Performance comparison against the stat-of-the-art

Dataset Method Annotation Retrieval

CAL500

Fscore RAUC
HEM+DTM [5] 0.264 0.708

SVM+DMM [27] 0.285 0.730
SparseRBM+DNN [7] 0.292 0.754

non-bagginga 0.274 0.738

intra-song baggingb 0.279 0.740

MajorMiner

AAUC RAUC
CBA [3] 0.861 0.754

CSML [4] 0.895 0.828
RAkEL [4, 42] 0.896 0.814
non-bagginga 0.891 0.820

intra-song baggingc 0.900 0.833

CAL10k

— RAUC
GMM+ENTΔ [18] — 0.887
SVM+Sparse [33] — 0.854

non-bagginga — 0.875

intra-song baggingd — 0.882
a non-bagging (K = 1, q = 1)
b intra-song (K = 15, q = 0.6)
c intra-song (K = 5, q = 0.3)
d intra-song (K = 10, q = 0.8)

representation. Following [18], we evaluated the performance only
for retrieval and used the pre-defined train and test splits.

5.2. Result and discussion

Figure 2 shows the performance of intra-song instance bagging on
the three datasets with respect to different values of K and q. Note
that the performances with K = 1 (i.e., using only one multi-tag
classifier) correspond to the non-bagging scheme, and the perfor-
mance with K = 1 and q = 1 is considered as the baseline.

The following two observations are made regarding Figure 2.
First, we can observe from the systems without ensemble (K = 1)
that only a fraction of the frames (e.g., q = 0.5) are needed to
achieve a comparable performance against the baseline (q = 1) on
all the tested datasets. In other words, we could apply frame-based
feature extraction algorithm to just half of the overall frames and
pool them, while still getting a competitive song-level feature. This
finding could potentially double the efficiency of many state-of-the-
art frame-based feature extraction algorithms. Second, when q and
K are sufficiently large, the intra-song instance bagging method out-
performs the baseline. One possible reason is that the ensemble tech-
nique can usually reduce the variance of feature modeling and at the
same time avoid over-fitting. We may state that this improvement is
unlikely to be feature dependent or dataset dependent as it happens
with three different datasets and two different features.

Table 1 shows that the proposed intra-song instance bagging
method is fairly competitive against several state-of-the-art meth-
ods, many of which involves advanced feature extraction algorithms
(e.g., sparse restricted Boltzmann machine (SparseRBM) [7] and dy-
namic texture model (DTM) [5]) or sophisticated machine learning
algorithms (e.g., random k-labelsets (RAkEL) [25], cost-sensitive
multi-label learning (CSML) [4], deep neural network (DNN) [7],
and Dirichlet mixture model (DMM) [27]). For example, the pro-
posed method obtains the best accuracy in both annotation and re-
trieval on MajorMiner, and the second-highest accuracy in retrieval
on both CAL500 and CAL10k. From Table 1, we also see that the

Table 2: Performance comparison between the inter-song (‘Inter’)
and intra-song (‘Intra’) bagging methods on the three datasets

Dataset Setup
Annotation Retrieval

Inter Intra Inter Intra

CAL500

K q Fscore RAUC

15

0.2 0.243 0.276 0.712 0.739
0.4 0.271 0.276 0.729 0.739
0.6 0.276 0.278 0.733 0.740
0.8 0.272 0.279 0.732 0.739
1 0.278 0.278 0.735 0.739

MajorMiner

K q AAUC RAUC

15

0.2 0.896 0.896 0.818 0.828
0.4 0.903 0.896 0.829 0.831
0.6 0.899 0.898 0.828 0.832
0.8 0.898 0.898 0.826 0.832
1 0.895 0.898 0.823 0.832

CAL10k

K q – RAUC

10

0.2 – – 0.848 0.882
0.4 – – 0.871 0.882
0.6 – – 0.877 0.882
0.8 – – 0.880 0.882
1 – – 0.879 0.881

baseline method (non-bagging, K = 1, q = 1) are in fact compet-
itive as well, showing the effectiveness of the multiple-tag classifier
framework (cf. Section 3.1) and the AW or EchoNest features. How-
ever, to reach comparable result with the state-of-the-art, incorporat-
ing ensemble techniques such as intra-song instance bagging seems
to be advisable. As intra-song instance bagging is a meta algorithm,
we believe that it is also applicable to other existing systems for im-
proving the performance.

Lastly, Table 2 compares the intra-song instance bagging with
the conventional inter-song counterpart with varying qs and a fixed
K. The result validates the advantage of the intra-song method. For
the retrieval task, the performance difference with certain setting can
reach up to 3.4% (e.g., q = 0.2 on CAL10k). As for the annotation
task, the performance difference is not pronounced.

6. CONCLUSION

In this paper, we have introduced a novel meta algorithm called intra-
song instance bagging and validated its efficiency through testing it
on three different datasets and two distinct features. We have also
shown that intra-song instance bagging performs better than conven-
tional inter-song instance bagging and many state-of-the-art meth-
ods. Performing frame samplings before feature extraction offers an
addition gain in efficiency. As intra-song instance bagging is a meta
algorithm, it holds the promise of improving other MIR or pattern
recognition applications.
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