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ABSTRACT

Non-negative Matrix Factorization (NMF) is frequently used

for audio source separation. One downside of the NMF is,

that it is not able to capture temporal structure of sound

events. NMF splits these events into different components. In

this paper we present an extension to NMF, which is capable

of representing sound events with temporal structure in only

one component. We also present an algorithm, which uses

this method efficiently. We show that this algorithm leads

to a more compact factorization (i.e. with less components)

compared to NMF, without losing separation quality.

Index Terms— NMF, NMFD, Sound Source Separation

1. INTRODUCTION

NMFwas introduced by Paatero [1], but only became popular

after Lee and Seung published efficient algorithms [2]. NMF

is frequently used in audio source separation, e.g. [3, 4],

because it is able to factorize audio signals into a specified

number of components which correspond to sound events.

These events can be assigned to the original sources by clus-

tering. For this step, it is necessary to chose a suitable number

of components. If it is chosen too high, the clustering gets

more difficult. One way of determining this number for NMF

is e.g. Automatic Relevance Determination (ARD) [5].

Some sound events, especially percussive ones, have a tem-

poral structure, that cannot be captured by NMF. These events

are partitioned into different components, making the cluster-

ing more difficult. Smaragdis proposed an extension to NMF

[6], Non-negative Matrix Factor Deconvolution (NMFD),

which is able to represent events with temporal structure in

only one component. In this paper, we show why NMFD fails

in separating sources for some kinds of mixtures and present

an extension to NMFD, which is more robust. We show, how

this method can be used together with NMF with ARD to

perform a separation of mixtures with less components.

The paper is structured as follows: In Section 2, we describe

the NMFD and explain, how it can be used for audio source

separation. In Section 3, we propose our extension to NMFD.

In Section 4 we describe how this method can be used in

a source separation algorithm and show, that it results in a

factorization with a reduced number of components. Finally,

in Section 6, we give our conclusions.

2. NON-NEGATIVE MATRIX FACTOR

DECONVOLUTION

NMFD approximates a matrixX of size K ×N by

X ≈ X̃ =

θ−1
∑

ϑ=0

Bϑ

→ϑ

G , (1)

where the →l operator shifts the columns of the matrix l

spots to the right. The newly created columns at the left are

filled with zeros. Bϑ is of size K × I and G is a matrix of

size I × N . I is a user defined parameter, corresponding to

the number of components in which the NMFD separates the

matrix. B can be interpreted as basis matrices Bi of size θ,

with corresponding activation vectors Gi, where the index i

denotes the ith component. For θ = 1 the basis matrices Bi

become basis vectors. This case is equivalent to the NMF.

B and G are iteratively calculated by minimizing a distance

function between X and X̃. Lee and Seung [2] introduced

multiplicative update rules for NMF for the squared Eu-

clidean (SE) distance and for Kullback Leibler (KL) diver-

gence, resulting in convergence to a local minimum of the

distance function. We will use the update rules for KL di-

vergence for ease of notation. However, our method can be

applied aquivalently for other distance functions, such as SE

distance or Itakura Saito (IS) distance. The update rules for

NMFD for the KL divergence proposed by Smaragdis [6] are

G← G⊗





θ−1
∑

ϑ=0

B
T

ϑ

←ϑ
(

X

X̃

)



⊘

(

θ−1
∑

ϑ=0

B
T

ϑ 1

)

(2)

and

Bϑ ← Bϑ ⊗

(

(

X

X̃

)

→ϑ

G

T
)

⊘
(

1G
T
)

, (3)

where⊗ and⊘ denote elementwise multiplication resp. divi-

sion. 1 is a K × N matrix with all elements set to one. For
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θ = 1 these update rules transform to the NMF update rules

proposed by Lee and Seung [2]. The convergence to a local

minimum of the distance function leads to a dependency on

the initializations of the matrices B and G. For different ini-

tializations the NMFD can produce different factorizations.

2.1. NMF with Automatic Relevance Determination

The number of components I is an important parameter re-

garding separation quality. If it is chosen too small, there are

not enough components to approximate X correctly. If it is

chosen too high, the components are overseparated and clus-

tering gets difficult. Its optimal choice depends onX.

A method to estimate this parameter during runtime of NMF

is Automatic Relevance Determination (ARD). ARD places

priors on Bi and Gi, which are dependent on an irrelevance

parameter βi. Together with B and G, β is iteratively up-

dated, maximizing the posterior of the parameters given the

data. Thus, some of the βi converge to a large theoretical up-

per bound, corresponding to irrelevant components. Tan and

Févotte proposed update rules for NMF with ARD, using the

KL divergence [7]. Recently, generalized update rules using

the β-divergence were proposed [5].

2.2. NMFD for Sound Source Separation

When applied to the magnitude spectrogram of an audio sig-

nal, NMFD can be used for source separation. In this case

the K × θ basis matrices Bi can be interpreted as spectral

bases that are multiplied with temporal activation vectorsGi.

The size θ of the basis matrices defines how much temporal

structure can be captured by each component. The separated

matrices S̃i can be interpreted as spectrograms of the sepa-

rated acoustical events. Figure 1 shows an example for source

separation of two drum sources by NMFD. Figure 1(a) shows

the approximated spectrogram X̃. The two basis matricesBi

on the left side contain the spectral shape of the two sources.

The activation vectorsGi at the top show, at which time these

sources are active. Figure 1(b) shows the approximated first

source S̃1 and the basis vector B1 (left) and gain vector G1

(top). For this separation, we used θ = 10, because this is the

size of the largest temporal structure in this mixture.

In this example, the separation with NMFD works well.

However, the fact, that the update rules only converge to a

local minimum of the distance function, can lead to different

results for different initializations ofB andG. While the tem-

poral shape of the basis matricesBi helps capturing temporal

structure of the sources, it also makes the separation more dif-

ficult. A component with large basis matrices might be able to

represent more than one note, leading to a worse separation.

Figure 2 illustrates this problem. NMFD is used on the same

example as before, but this time with another random initial-

isation. S̃1 and S̃2 do not correspond to the original sources,

but are mixtures of different parts of the sources. The sepa-

ration of the sources fails. Using more random initializations
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(c) S̃2

Fig. 1. Example of successfull source separation with NMFD

for a mixture of sources with temporal structure.
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(b) S̃2

Fig. 2. Example of unsuccessfull source separation with

NMFD for a mixture of sources with temporal structure.

showed, that this problem appears for about 25% of random

initializations for this example. Because of this problem, the

NMFD leads to worse separation results than NMF over a

representative testset, as we showed in [8].

3. CUSTOM SIZED NON-NEGATIVE MATRIX

FACTOR DECONVOLUTION

The examples in Section 2.2 show, that the temporal shape

of Bi is helpful, but can lead to problems. We conclude,

that it would be helpful to give the Bi a temporal shape that

is as large as necessary, but as small as possible. Different

sources behave differently and hence need a different size for

the spectral bases. Therefore, it does not make sense to have

a fixed size θ for the spectral bases of all the components, but

different sizes θi for each component.

We propose a custom sized NMFD (CSNMFD), where the

spectral bases of each component have different sizes. We
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define this method componentwise as

X ≈ X̃ =

I
∑

i=1

S̃i =

I
∑

i=1

θi−1
∑

ϑ=0

Bi,ϑ

→ϑ

Gi, (4)

where θ is a vector of lenght I , with θi being the size of the

spectral base Bi of the ith component. The componentwise

update rules for the KL divergence are

Gi ← Gi ⊗





θi−1
∑

ϑ=0

Bi,ϑ
T

←ϑ
(

X

X̃

)



⊘

(

θi−1
∑

ϑ=0

Bi,ϑ
T
1

)

(5)

and

Bi,ϑ ← Bi,ϑ ⊗

(

(

X

X̃

)

→ϑ

Gi

T
)

⊘
(

1G
T

i

)

(6)

Although the update rules are presented componentwise, they

should be calculated blockwise for blocks with the same size

forBi for reasons of efficiency. In fact, the updates ofBϑ can

be calculated in one block, exactly as in NMFD (see Eq. 3).
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Fig. 3. Example of source separation with CSNMFD for a

mixture of sources with temporal structure.

3.1. CSNMFD for Sound Source Separation

CSNMFD provides the possibility to adapt the size of Bi for

each component, giving the bases enough space to correctly

approximate the sources, while minimizing the risk of bad

separation quality due to too large spectral bases. Figure 3

shows the result of source separation using CSNMFD on the

same example as before (note the different size of the matrices

Bi). For this example we used θ1=10 and θ2=4. The spectral

bases correspond to the original sources, hence the separation

is successful. In contrary to the NMFD no bad separations

occured for different random initializations. The results for

the CSNMFD have a comparable quality as the correct sepa-

rations with NMFD.

NMF with ARDX

Harmonic

Ratio

B,G

Cross

Correlation

G

HR < tHR

CC > tCC

Merge

Componentsyes

CSNMFD

B,G

B,G

no

B,G

G

B,G

Fig. 4. Signal flow of the proposed algorithm.

4. COMPONENT SIZE ADAPTION USING CSNMFD

CSNMFD is able to capture temporal structure, that NMF

cannot capture, while being more stable in results than

NMFD. However, NMF, NMFD and CSNMFD require differ-

ent previous knowledge. NMF only needs information about

the number of components I (which can be solved by using

NMF with ARD), NMFD also needs information about the

temporal structures in the mixture to chose a suitable value

for θ. CSNMFD even needs information about the temporal

structure of all components. In the following, we present an

algorithm using CSNMFD, which first gets a rough estima-

tion of the necessary number of components I by using ARD

and then reduces this number while simultaneously determin-

ing the temporals structure of the components.

Figure 4 shows the signal flow of the proposed algorithm. We

start by performing NMF with ARD, resulting in a factoriza-

tion with a suitable number of components. Acoustical events

with a temporal structure, that cannot be represented by NMF,

will be split into different components. The activation vectors

Gi of these components have a high cross correlation (CC,

see e.g. [9]). Thus, we calculate the CC of all Gi to find

these components. As the lag of the highest correlation will

be small, a maximum lag of lmax for CC is allowed. The

problem exists for percussive sources, thus we also calculate

the harmonic ratio (HR, see e.g. [10]) to make sure that no

harmonic components are chosen. If the maximum of the CC

exceeds a threshold tCC and the HR of the components falls

below a threshold tHR, the components are merged. This is

done by first calculating the spectrograms S̃m and S̃n of these

components. Now NMFD with one component is performed

on the spectrogram S̃m+n = S̃m + S̃n. The size θm+n of

the basis matrix Bm+n is chosen corresponding to the lag, at

which the CC between componentsm and n shows its maxi-

mum. Now the original Bm and Gm are replaced by Bm+n

resp. Gm+n and θm is set to θm+n. At this point, the new

basis matrices can be of different sizes, so NMF transforms to

CSNMFD. Bn andGn are deleted. After all components are

merged, CSNMFD is performed to adjust the components.

This procedure is repeated until no components are merged.
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Fig. 5. Result of NMF with ARD for a mixture of saxophone

and bass drum.
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Fig. 6. Result of the algorithm using CSNMFD for a mixture

of saxophone and bass drum.

5. EXPERIMENTAL RESULTS

Figure 5 shows one exemplary result of NMF with ARD and

Figure 6 shows the result for the algorithm using CSNMFD

for the same example. NMF with ARD needs five compo-

nents to represent the bass drum. The proposed algorithm is

able to represent it in one component. After optimal cluster-

ing, the SDR is 18.5 dB for both of these examples.

We performed the algorithms on 300 two-source-mixtures,

that were mixed from 25 samples that we extracted from the

QUASI database [11] with intial values for I in the range

from 10 to 30. The thresholds were set to tCC = 0.75 and

tHR = 0.6 and lmax = 3. We used a non-blind clustering al-

gorithm, maximizing the SDR (see [3]), to prevent our results

from being deteriorated by the performance of a clustering

algorithm. We performed the experiment for NMF using SE

distance, KL divergence and IS distance. As mentioned in

Section 2.2, NMFD leads to worse separation as NMF, there-

fore we only compare our method to NMF. Figure 7 shows

the results for KL divergence, which led to the best results.

It can be observed, that the quality in SDR is comparable for

both methods, however, the proposedmethod needs less com-

ponents. To prove the benefit of the reduced number of com-

ponents for clustering, we performed the algorithm with the
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Fig. 7. NMF with ARD compared to the proposed algorithm.

Ifinal is the average resulting number of components.

SE distance KL divergence IS distance

∆SDR -0.15 0.01 0.03

∆Ifinal -1.66 -0.47 -0.16

Table 1. Average difference of resulting number of compo-

nents Ifinal and separation quality SDR between ARD-NMF

and the proposed algorithm for different distance functions.

blind clustering algorithm proposed in [4], resulting in a 0.48

dB higher SDR for our method compared to ARD-NMF.

Table 1 shows the difference of resulting number of compo-

nents Ifinal and separation quality SDR between ARD-NMF

and the proposed algorithm for the different distance func-

tions for an intial number of components of I = 30. For KL

divergence and IS distance the separation quality in SDR is

comparable, however, the proposed method reduces the num-

ber of resulting components. For the SE distance the number

of components is reduced even more, but the separation qual-

ity is slightly lower than for ARD-NMF.

6. CONCLUSIONS

In this paper we described the problems that arise when using

NMFD for sound source separation of mixtures with tempo-

ral structure. We proposed a new method, CSNMFD, which

provides the possibility to adapt the size of the spectral basis

matrices to different components. We showed exemplarily,

that this method is able to solve these typical problems.

We described, how CSNMFD can be used for source sepa-

ration and showed, that it results in a factorization with less

components. Besides this, the method provides additional ad-

vantageous information that a clustering algorithm could use,

e.g. information about the temporal structure and the har-

monicity of the components.
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