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ABSTRACT

This paper proposes a method for estimating carrier fre-
quencies for coherent demodulation using low-frequency
amplitude modulation criteria and a frequency-smoothing
regularizer. This process combines with coherent modulator
estimation to create an iterative approach for simultaneously
determining the optimally low-frequency modulator and cor-
responding carrier for an arbitrary signal. The method is
demonstrated with unsupervised semi-blind source separa-
tion of speech mixed with several types of tonal interference.

Index Terms— Amplitude modulation, source separa-
tion, pitch estimation

1. INTRODUCTION

Coherent demodulation [1] of an acoustic signal defines each
harmonic component of a signal as the product of a complex
sinusoidal carrier and a complex low-frequency modulator.
The use of complex components is advantageous for several
tasks, such as source separation [2, 3], but, in order to estimate
these modulators, an estimate of carrier frequency is required
(unlike other techniques like Hilbert demodulation).

Providing an accurate carrier frequency estimate is a chal-
lenge, especially in the presence of interference. Early ver-
sions of coherent demodulation used fixed-frequency carriers
based on spectral center-of-gravity estimates [1], but those
are problematic in the likely case that carriers cross subband
boundaries. Instantaneous frequencies were later estimated
from conditional mean frequencies in the STFT [4]. Most
recently, instantaneous pitch estimates determined carrier fre-
quencies [5]. However, estimating carriers in the presence of
interference or multiple sources still remains a challenge.

In this paper, an approach for carrier frequency esti-
mation is proposed that seeks carriers corresponding to
low-frequency modulators. This combines with modulator
estimation to automatically determine both the optimally
low-frequency modulator and corresponding carrier in an
unsupervised fashion.

Though this is the first approach to jointly optimize the
complex modulator/carrier pairs in coherent demodulation,

other algorithms have performed similar estimations. Prob-
ablistic amplitude demodulation [6], for example, solves for
a frequency-constrained real modulator according to desired
carrier statistics. Residual Interfering Signal Cancelers [7]
and dynamic tracking filters [8] have also been used to auto-
matically track harmonic or formant components.

This paper will first provide additional background on co-
herent demodulation, and then the proposed carrier estimation
technique will be introduced, followed by several examples.

2. BACKGROUND

2.1. Coherent Demodulation

Coherent demodulation models a signal as the sum of modu-
lated complex sinusoids, called the sum-of-products [9]:

s[n] =

K−1∑
k=0

sk[n] =

K−1∑
k=0

mk[n] · ck[n]. (1)

As discussed above, the carriers are estimated first. The mod-
ulators mk are determined by multiplying the signal with the
complex conjugate of the carrier and low-pass filtering. So,
the kth modulator is given by

mk[n] = hLP [n] ∗ (s[n] · ck[n]∗) (2)

where hLP [n] is a low-pass filter.

2.2. Optimization for Overlapping Components

Estimating clean modulators with Eq. (2) requires that the
carriers are sufficiently spaced in the frequency domain. Oth-
erwise, the low-pass filter will pick up any interfering energy
from neighboring bands.

A solution for this problem was recently proposed [10],
which finds the optimally low-frequency set of modulators
that satisfies the sum-of-products model in Eq. (1). This ap-
proach improved modulation-based source separation for au-
dio mixtures, but it also required a priori knowledge of the
pitch of each source in the mixture, a significant assumption.

In the section to follow, an approach is proposed for
estimating the carrier frequency automatically from the mod-
ulators. In [10], it was determined that seeking optimally

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2138



low-frequency modulators is an effective strategy for source
separation, so here we apply the same strategy to carrier es-
timation. This approach seeks a time-varying version of the
center-of-gravity estimate with frequency modulation con-
straints. A smoothed, time-varying center-of-gravity estimate
was also discussed in [11], though in that case the smoothing
constraint was controlled via STFT window length.

3. AUTOMATIC CARRIER PITCH DETECTION

In its simplest form, the proposed approach is to find the
carrier pitch that results in a low-frequency modulator while
remaining smooth. This requires defining constraints on the
spectra of both the amplitude and frequency modulation of
each component in Eq. (1). The amplitude modulation con-
straints will encourage low-frequency modulators, and the
frequency modulation constraints will encourage a smooth
pitch trajectory for the carrier.

To formalize this, assume that we have some initial car-
rier pitch estimate p(i), which is a vector of R pitch estimates
corresponding to R time frames of length K samples each.
We can drive a carrier at these frequencies and estimate the
associated modulator m(i) via Eq. (2).

m(i)[n] = hLP [n] ∗ (s[n] · ej2πp
(i)[n]nT )

We want to find some set of carrier frequency offsets x̂(i) so
that the modulator associated with a carrier driven at p(i) +
x̂(i) is lower frequency thanm(i) (while still being sufficiently
smooth in the pitch domain). If an optimal x̂(i) is found,
the pitch estimate is updated by simply adding the offset,
p(i+1) = p(i) + x̂(i).

One way to define x̂(i) is as the solution to a least-squares
problem with two cost functions. First, we need a penalty for
high frequencies in the amplitude modulation.

CAM (x(i)) =
∑
r

|M (i)
r (f − x(i)r )|2

M
(i)
r is a matrix whose diagonal is the length K magnitude

spectrum of the rth frame of m(i), and f is a vector of mod-
ulation frequencies corresponding to the bins in M (i)

r . This
function weights the spectrum of the modulator by the spec-
tral frequencies (adjusted by the offset x(i)), which penalizes
high energy at high frequencies. Minimizing this cost func-
tion solves for the set of carrier offsets that give a modulator
with a spectral center-of-gravity of zero at all frames (as in
[11]). However, there are no assurances about the smooth-
ness of the carrier.

Second, the frequency modulation must also be con-
strained to smooth the updated pitch estimate p(i) + x(i).

CFM (x(i)) = ||hHP ∗ (p(i) + x(i))||2

hHP is a high-pass filter whose cut-off frequency defines the
degree of frequency modulation allowed in the carrier pitch.
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Fig. 1. A demonstration of the proposed algorithm (a) at ini-
tialization and (b) after iteration converges, with the carrier
estimate in red. The carrier frequency is successfully tracked.

These two cost functions can simply be summed and min-
imized to solve for the optimal offset x̂(i) that balances low-
frequency amplitude modulation and smooth pitch.

x̂(i) = argmin
x(i)

CAM (x(i)) + λCFM (x(i)) (3)

Because this problem is in least-squares form, x̂(i) is the point
where the cost function gradient is zero.

x̂(i) = A(i)−1b(i) (4)

where

A(i) = ITKM
(i)TM (i)IK + λHTH

b(i) = ITKM
(i)TM (i)fv − λHTHp(i)

H is a high-pass filter convolution matrix, M (i) is a matrix
whose diagonal is the concatenated magnitude spectra of each
frame of m(i), fv is a vector of modulation frequencies corre-
sponding to the entries in M (i), and IK is a binary matrix of
sizeRK xR with ones in the first column of the firstK rows,
ones in the second column of the next K rows, and so on.

By iterating between modulator estimation and carrier
pitch update estimation, the optimal set of low-frequency
modulators and corresponding carriers can be automatically
calculated.

It is important to note that an initial estimate for the carrier
pitch p(0) is still required to estimate the first modulatorm(0).
The requirements for this initial estimate are closely tied to
the modulator bandwidth, because the amplitude modulation
cost function CAM will only consider frequencies that are
within the modulator bandwidth (typically less than 100Hz).
This means that the initial estimate must be reasonably close
to the actual carrier frequency, or the modulator bandwidth
must be expanded for the carrier estimation process. Remov-
ing this requirement is a goal in future work.

As an initial demonstration of the proposed algorithm,
the carrier estimates for a single amplitude- and frequency-
modulated sinusoid are shown for initial conditions in Fig.
1(a) and after convergence in Fig. 1(b), where the carrier fre-
quency is accurately estimated.
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4. EXAMPLE: SPEECH PLUS INTERFERENCE

We will next examine separation of speech from a mixture
using the proposed algorithm. However, due to the potential
susceptibility to poor initialization, we require the assumption
that the interference is of a higher fundamental frequency than
the speech. This implies that the lowest-frequency carrier in
the mixture is the speech fundamental f0.

Based on this assumption, the separation process is as fol-
lows:

1. Initialize a carrier at 100Hz; iterate to estimate f0.

2. Set speech harmonics as multiples of f0, extract modu-
lators, and subtract components from mixture.

3. Initialize interference carrier with frequency of maxi-
mal spectral energy in residual; iterate.

4. Repeat 2-3 until exit criteria met (such as a maximum
number of interfering components).

5. Pool all carrier estimates (speech and interference) and
update until convergence.

6. Separate speech from interference according to [10].

To visualize this process, Fig. 2(a) shows the spectrogram
for a speech signal from the TIMIT corpus (female uttering
“The pipe began to rust while new”) with sinusoidal interfer-
ence. In this example, as well as those that follow, the high-
pass matrix H is set as a toeplitz matrix of the symmetric,
non-causal impulse response [− 1

2 , 1,−
1
2 ], and the parameter

λ is set to 107 (the regularizer is large to offset the squaring
of the frequency vector f in CAM ).

In accordance with step 1, the speech fundamental is es-
timated and used to estimate the harmonic frequencies for
speech (red lines in Fig. 2(b)). The subsequent modula-
tor/carrier pairs are removed from the mixture (step 2), and
the carrier frequency of the interferer is estimated in the resid-
ual with the same proposed method (step 3), shown with a
blue line in Fig. 2(b). These frequency estimates are all si-
multaneously fine tuned (step 5) and then used to separate the
speech (step 6), resulting in the separated spectrogram in Fig.
2(c). The metrics in Table 1 also show the signal-to-distortion
ratio (SDR), signal-to-interference ratio (SIR), and the signal-
to-artifacts ratio (SAR) for the separation, calculated with the
BSS EVAL toolbox [12]. All metrics show good separation,
though SAR is a bit lower than SIR.

This same process was repeated for several tonal interfer-
ers (added with equal power to the same speech sample from
above): a flute (Fig. 3(a)), a European emergency siren (Fig.
3(b)), and an American emergency siren (Fig. 3(c)). The
SDR, SIR, and SAR measurements for the separated speech
are shown in Table 1 and the resulting separated speech spec-
trograms are shown in Fig. 3(d), Fig. 3(e), and Fig. 3(f),

Interferer SDR SIR SAR
Sinewave 17.0 dB 25.2 dB 17.1 dB

Flute 6.8 dB 16.2 dB 7.4 dB
European Siren 7.5 dB 15.9 dB 8.4 dB
American Siren 9.1 dB 17.3 dB 9.9 dB

Table 1. SDR, SIR, and SAR for speech separated from each
interfering signal.

respectively. In each case, five interfering carriers were esti-
mated for step 4.

In all cases, the interference is visually reduced in the
spectrograms, and the separation metrics also indicate good
separation. As was the case with the sinewave separation,
artifacts contribute more to the distortion than residual inter-
ference. The interference that does remain also gives some
insight into areas for future improvement.

In some cases, tonal components in the interference are
missed by the residual iterations (such as the harmonic around
900Hz at 2.5 seconds in the speech/flute mixture). Similarly,
some of the interference estimates converge to regions of the
voice and strip away speech content, reducing SAR. These are
both problems that could be fixed with better pitch estimate
initializations or a more effectively constrained update.

Non-tonal elements of interference also remain in the re-
constructed speech (though these elements are not evident in
the spectrograms). In the case of the flute, for example, most
of the remaining interference is the flautist blowing on the
mouthpiece. Similar non-tonal components persist for the
European siren. Eliminating these interferences is a more
challenging problem, as the coherent demodulation theory
is based on sinusoidal carriers. Removing these elements
would require expanding the theory to include non-tonal car-
riers or developing a modulation speech model to exclude
non-speech-like elements.

5. CONCLUSION

A new approach for coherent demodulation carrier estimation
was proposed, and it was shown how this process jointly in-
tegrates with modulator estimation. Several examples were
shown in which the approach separates speech from several
types of interfering signals in an unsupervised fashion with
only an assumption of relative pitch. However, these exam-
ples also demonstrated the need for improvement, most espe-
cially a more accurate initialization strategy prior to carrier
frequency updates. But, even in its current form, the algo-
rithm is an effective means for speech enhancement or sepa-
ration with minimal available information.
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(c) Separated from Sine (15.1 dB)

Fig. 2. Visualizations of several stages of the separation process for speech with an interfering sinusoid: (a) the initial mixture;
(b) carrier estimates derived with the proposed method for speech (red) and interference (blue); and (c) separated speech.
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(a) Speech + Flute Mixture
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(b) Speech + European Siren Mixture
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(c) Speech + American Siren Mixture
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(d) Speech Separated from Flute
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(e) Speech Separated from European Siren
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(f) Speech Separated from American Siren

Fig. 3. Spectrograms of mixtures and separated speech for several interfering signals: a flute ((a) and (d)); a European siren
((b) and (e)); and an American siren ((c) and (f)).
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