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ABSTRACT

In this paper we propose to incorporate contextual time-
frequency information for clustering-based blind source sep-
aration. Previous clustering-based approaches have success-
fully used clustering techniques to estimate time-frequency
separation masks; however, these approaches generally do not
consider the contextual information of each time-frequency
slot. Motivated by the homogenous behavior of speech sig-
nals, we modify the fuzzy c-means clustering to bias the
results in favor of cluster membership homogeneity within
localized neighborhoods in the time-frequency space. Experi-
mental evaluations in both simulated and real-world underde-
termined environments demonstrate improvement in source
separation performance over previous clustering approaches.

Index Terms— blind source separation, fuzzy c-means
clustering, contextual information, time-frequency masking

1. INTRODUCTION

Blind source separation (BSS) is the recovery of the origi-
nal source signals from multichannel mixed recordings where
only minimal a priori information is available. There are es-
sentially two main approaches to BSS, those based on inde-
pendent component analysis (ICA) [1] and clustering-based
techniques [2, 3]. An advantage of the clustering-based ap-
proach over ICA is its applicability to the underdetermined
scenario, i.e. where there are more sources than mixtures.

Many approaches to underdetermined BSS have relied
on the assumption of sparseness between speech signals in
the short-time Fourier transform (STFT) domain [4–7]. The
pioneering technique was the degenerate unmixing estima-
tion technique (DUET), where each source was recovered by
masking out the slots to which it was deemed to have not
contributed. This notion of time-frequency masking has since
been successfully extended [2, 8–10].

The authors of [2] introduced the multiple sensors DUET
(MENUET) algorithm, which used an arbitrary number of
microphones for echoic conditions. The algorithm computed
time-frequency separation masks by clustering a set of char-
acteristic feature vectors into distinct clusters, each represent-
ing a specific source. The clustering was executed with the

k-means clustering, which resulted in each feature vector be-
ing assigned to exactly one source. In [11], the MENUET
was modified to use the fuzzy c-means (FCM) clustering to
obtain a weighted mask in which each component was par-
tially assigned to the sources. This approach demonstrated
improvement in separation performance over the MENUET.

Despite the improvements of the work in [11], this ap-
proach computed the separation masks via considering each
time-frequency slot in isolation, and did not incorporate any
information of the surrounding slots. On the other hand, the
authors of [12] proposed that dominant segments of speech
signals form localized patches within the time-frequency
space, and that there exists a strong correlation between a
time-frequency slot and its neighboring points. This notion
was incorporated into an FCM-based method for mask esti-
mation, and yielded improvements in the source separation
performance. However, the algorithm was only evaluated in
simulated, overdetermined settings with a linear microphone
array.

The use of contextual information is well-documented for
robustness in image segmentation algorithms [13–16]. Of
particular mention is the scheme in [15], which proposed the
integration of contextual information by weighting the mem-
bership function of the FCM using the immediate surround-
ing time-frequency slots. This served multiple purposes, in-
cluding the promotion of homogenous regions within the data
space and robustness against noise. The resulting technique
was termed spatial FCM, which we denote as sFCM.

Motivated by the previous use of contextual information
within the BSS framework as in [12] and the promising work
of the sFCM for image segmentation in [15], we propose an
extension to the MENUET-based BSS scheme in [2,11] to in-
clude such contextual information. To the best of our knowl-
edge, the sFCM has not been investigated in the BSS frame-
work. We propose to adapt the sFCM and evaluate its ability
for time-frequency mask estimation. In contrast to previous
studies as in [12], we use a non-linear microphone array in an
underdetermined setting, and evaluate the performance of the
proposed scheme in both simulated and real-world conditions
in the presence of reverberation and/or environmental noise.
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2. CLUSTERING-BASED BSS

2.1. Model
We describe the general flow of the clustering-based BSS
schemes as described in [2, 11]. Consider an enclosure with
M microphones and N sources. We take the STFT xm(τ, f)
of the observed signal at each microphone m, where τ and
f denote the indices of the time frames and frequency bins
respectively. Assuming that the time frames are of suffi-
cient duration, the signals arriving at the microphones can be
approximated by an instantaneous mixing model [3] as

xm(τ, f) ≈
N∑
n=1

hmn(f)sn(τ, f), (1)

where hmn(f) is the room impulse response corresponding
to microphone m and source n, and sn(τ, f) is the STFT of
the signal sn(t). Under the assumption of source sparseness
in the STFT domain [2,5], it can be further assumed that each
xm(τ, f) is primarily contributed to by at most one active
source, the index of which is denoted here by n′:

xm(τ, f) ≈ hmn′(f)sn′(τ, f). (2)

2.2. Feature extraction and clustering

We extract characteristic features from xm(τ, f) to facilitate
in the estimation ofN separation masks. An extensive review
of suitable features is provided in [2]; we follow [2, 11] and
employ a complex vector θ(τ, f) = [θ1(τ, f), . . . , θM (τ, f)]
for m = 1, . . . ,M , by:

θm(τ, f) = θLm(τ, f) exp(iθPm(τ, f)),

where θLm(τ, f) encodes the normalized level ratio as

θLm(τ, f) =
|xm(τ, f)|
A(τ, f)

,

θPm(τ, f) is the phase ratio defined as

θPm(τ, f) =
1

α
arg

(
xm(τ, f)

xJ(τ, f)

)
,

where J denotes the index of the arbitrarily selected reference
sensor. The normalization factors A and α are defined as

A(τ, f) =

√√√√ M∑
m=1

|xm(τ, f)|2, α = 4πc−1dmax,

where c is the propagation velocity and dmax is the maximum
distance between any two microphones.

The features θ(τ, f) are then clustered with the FCM al-
gorithm to produce the partition matrix U, where each ele-
ment un(τ, f) ∈ [0, 1] of U specifies the degree to which
the feature vector θ(τ, f) is assigned to the nth cluster. We

denote the centroid of the nth cluster in the feature space by
vn. The partitioning is computed by minimization of the cost
function

CFCM =

N∑
n=1

∑
∀(τ,f)

un(τ, f)
p||θ(τ, f)− vn||2, (3)

where p is the fuzzification parameter to control membership
softness. The minimization problem is solved with Lagrange
multipliers, resulting in an optimization scheme where CFCM

is minimized by alternating iterations of (4) with (5). Begin-
ning with a random partitioning, the updates are as follows

vn =
∑
∀(τ,f)

un(τ, f)
pθ(τ, f)∑

∀(τ,f)
un(τ, f)p

, (4)

un(τ, f) =

 N∑
j=1

(
||θ(τ, f)− vn||2

||θ(τ, f)− vj ||2

) 1
p−1

−1 , (5)

until a suitable termination criterion is met; for example,
when the difference between successive partition or cluster
centroids are sufficiently small [17].

2.3. Source recovery
Upon calculation of the partition matrix, the membership val-
ues un(τ, f) are interpreted as a collection ofN fuzzy masks.
These are applied for separation to yield the source image es-
timate as [11, 12]:

ŝmn(τ, f) = un(τ, f)xm(τ, f). (6)

Finally the inverse STFT is taken to provide the estimate
ŝmn(t) of the source image at the microphone [5].

3. PROPOSED ALGORITHM

We modify the FCM clustering to incorporate time-frequency
information of the surrounding slots via adaptation of the
sFCM [15]. We introduce a contextual term cn(τ, f), which
provides a measure of the degree to which the slots in a local
neighborhood N(τ,f) around (τ, f) are assigned to the nth

cluster. The neighborhood is defined as

N(τ,f) = {(τ ′, f ′) : |τ ′ − τ | ≤ dτ , |f ′ − f | ≤ df},

where dτ and df control the size of the neighborhood in the
time and frequency directions (i.e. number of time frames
and frequency bins respectively). The contextual term is then
computed as

cn(τ, f) =
∑

(τ ′,f ′)∈N(τ,f)

un(τ
′, f ′). (7)

The membership partition update equation in (5) is modified
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Fig. 1. Experimental setup of microphones and speakers for evalu-
ations in Sections 4.2 and 4.3.

from un(τ, f) to u∗n(τ, f) to incorporate the neighborhood
information as follows:

u∗n(τ, f) = cn(τ, f)
q

 N∑
j=1

(
||θ(τ, f)− vn||2

||θ(τ, f)− vj ||2

) 1
p−1

−1 ,
(8)

where q is the context weighting parameter, which controls
the degree of influence of cn(τ, f).

The sFCM is a two-stage process at each iteration. The
first stage follows the regular FCM and computes the cen-
troids and partition memberships as in (4) and (5). The second
stage computes cn(τ, f) and uses this to update the partition
memberships using (8). These updated membership values
are used for the following iteration. The final sFCM partition
memberships u∗n(τ, f) are then used as the separation masks.

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental setup
Fig. 1 depicts the microphone and source arrangement used to
generate simulated and recorded microphone data. The four
sources were obtained from the TIMIT database [18]. For all
experiments, the STFT frame size was 1024 samples (128 ms)
with a frame shift of 256 samples (32 ms).

We evaluated the source separation performance with the
MATLAB BSS EVAL toolbox [19]. Given a priori knowl-
edge of the true source image smn(t) at the microphone, each
source image estimate ŝmn(t) is decomposed as

ŝmn(t) = smn(t) + espatmn (t) + einterfmn (t) + eartifmn (t), (9)

where espatmn (t), einterfmn (t), eartifmn (t) represent the spatial dis-
tortion, interference and artifact error terms respectively.
This decomposition allows the calculation of the source-to-
interference ratio (SIR), which quantifies the amount of inter-
ference from the other sources in the target source estimate.
The SIR of each source is computed as

Fig. 2. Experimental results comparing the FCM and sFCM meth-
ods of mask estimation at various room reverberation times. Each
bar shows the averaged SIR over 20 combinations of speech utter-
ances. The error bars denote the standard deviation.

SIRn = 10 log10

∑M
m=1

∑
t(smn(t) + espatmn )2∑M

m=1

∑
t e

interf
mn (t)2

. (10)

4.2. Simulated data
The configuration in Section 4.1 was simulated with source
signals of duration 6 s and a source distance of R = 50 cm.
The image model method for small-room acoustics [20] was
used to calculate the room impulse responses.

Simulations were conducted for both the FCM system de-
scribed in Section 2.2 and the proposed sFCM system de-
scribed in Section 3. A wide variety of parameter combi-
nations were tested against the simulated data, resulting in
a combination which was empirically determined to provide
robust results in differing reverberation conditions: p = 2, q =
0.75, dτ = 2, df = 2. These parameters were used for each of
the experiments presented. Furthermore, p = 2 was also used
for experiments with the unmodified FCM system.

Fig. 2 illustrates the improvement in SIR afforded by the
modification. As immediately evident, the calculated SIR
of the sFCM separation is larger than that of the original
FCM separation at all levels of reverberation, with the differ-
ence between the two rising from approximately 1.86 dB to
5.45 dB as the reverberation is increased from 0 ms to 450 ms.

4.3. Real room recordings
Real recordings were collected under the conditions described
in Section 4.1, with varying microphone and speaker spac-
ings. The recordings were collected in an office environment,
and the room reverberation was measured via the method of
recording the room response to an impulsive source as de-
scribed in [21] to be RT60 = 390 ms. Fig. 3 shows the aver-
age SIR achieved by the original FCM system and the pro-
posed sFCM system over 20 combinations of 4 signals each
of length 10 s from the TIMIT database. It is clear that at each
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Fig. 3. Experimental results for various microphone and loud-
speaker spacings for real recordings in an office environment. Each
bar shows the averaged SIR over 20 combinations of speech utter-
ances. The error bars denote the standard deviation.

combination of microphone spacing and source distance, the
sFCM system offers a significant improvement.

These results suggest that the significant improvement by
the sFCM in the simulated data extends to real recordings.
Note that these recordings were made at a sampling rate of
8 kHz, which implies a maximum microphone spacing of ap-
proximately 4.28 cm before spatial aliasing effects impede on
the system [12]. Therefore, the significant deterioration in
source separation quality when the spacing is increased to
8 cm suggests that the aliasing may degrade separation per-
formance, though the improvement in SIR from the sFCM
system over the unmodified system indicates that the sFCM
offers increased robustness to aliasing effects.

4.4. Benchmark SiSEC data

We applied the proposed system to existing benchmark data
sets of the Signal Separation Evaluation Campaign (SiSEC).
We evaluated our proposed sFCM on the 2008 “Under-
determined speech and music mixtures” and 2010 “Source
separation in the presence of real-world background noise”
development data sets [22, 23]. Table 1 displays the separa-
tion results, with respect to the SIR as defined in (10). The
same performance measure was used as in the SiSEC 2008
and 2010 campaigns to facilitate easy comparison with the
presented results. The results are averaged for all sources at
each available mixture.

As Table 1 details, the average achieved SIR with the
sFCM is superior to the unmodified FCM, for both the 130 ms
and 250 ms cases. The results obtained from the SiSEC 2008

SIR (dB)

SiSEC 2008 recordings FCM sFCM

dev1 male3 liverec 130ms 5cm 5.26 6.36
dev1 female3 liverec 130ms 5cm 6.24 7.44
dev1 male4 liverec 130ms 5cm 0.46 5.20
dev1 female4 liverec 130ms 5cm 5.62 3.39
dev1 male3 liverec 250ms 5cm 4.55 5.84
dev1 female3 liverec 250ms 5cm 4.55 6.23
dev1 male4 liverec 250ms 5cm 3.41 4.65
dev1 female4 liverec 250ms 5cm 3.62 3.64

SiSEC 2010 recordings FCM sFCM

dev 2ch 3src Ca Ce 6.25 10.36
dev 2ch 3src Ca Co 6.75 8.92
dev 2ch 3src Sq Ce 12.40 14.58
dev 2ch 3src Sq Co 13.07 15.57
dev 2ch 3src Su Ce 3.65 6.25

Table 1. Separation results for SiSEC 2008 and 2010 data sets.
SiSEC 2010 results are averages over the A and B recordings.

recordings are comparable to the results from the campaign
available at [24]. For example, the highest achieved average
SIR for male4 liverec 250ms 5cm was 4.05 dB, achieved
by the authors of [25]. We achieved a value of 4.65 dB.

Similarly, the results of the sFCM system on the SiSEC
2010 data are comparable to the results of the evaluation cam-
paign, as available at [26]. Although we do not have access
to the results in the development data set, we can compare
our results to the results of the test set (which were recorded
in the same conditions). For example, the authors of [27, 28]
reported an average SIR of 6.0 dB in the Square environment,
whereas we achieved an average of 15.08 dB.

5. CONCLUSION

This paper investigated the inclusion of contextual time-
frequency information for robustness in mask estimation
within a clustering-based BSS framework. Rather than con-
sidering each time-frequency slot in isolation when classi-
fying the feature vectors into their representative clusters, a
local neighborhood of surrounding slots was included and
integrated into the FCM clustering. The FCM was modi-
fied via an adaptation of the sFCM to include an additional
term to bias the partitioning to favor increased cluster mem-
bership homogeneity within localized neighborhoods in the
time-frequency space.

Experimental evaluations were conducted in both simu-
lated and real-world conditions, with the presence of reverber-
ation and environmental background noise. The sFCM-based
system demonstrated significant improvements in source sep-
aration ability over the FCM-based system, particularly in the
presence of significant reverberation.
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