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ABSTRACT
Impulse responses of filters that perform spatial null in a tar-
get direction, so-called target-cancellation filters (CFs), are
usually long and dense due to the reverberant acoustic envi-
ronment. It is therefore hard to blindly estimate them from
noisy recordings of the target. In this paper, we show that ef-
ficient sparse CFs having many coefficients equal to zero can
be designed such that their cancellation performance is toler-
ably lower than the performance of dense CFs. We show that
an efficient sparse CF can be blindly estimated from noisy
data, provided that its support is known. The resulting filter
is better than a dense CF which has been blindly estimated
without any prior knowledge.

Index Terms— Target Cancellation Filters, Sparse Fil-
ters, Noise Extraction, Semi-Blind Audio Source Separation

1. INTRODUCTION

Target-cancellation filters (CFs) are important tools in audio
signal processing tasks such as signal separation, noise sup-
pression and speech enhancement. A CF is a multichannel fil-
ter that cancels the target signal but lets other signals (interfer-
ers and ambient noise) pass through. Its output thus provides
a noise-reference signal that is useful for parallel processing
of the original noisy recording of the target. For example, CFs
are used within the blocking matrix part of generalized side-
lobe cancellers [1], where the outputs are used for adaptive
interference cancellation and post-filtering; see, e.g., [1, 2, 3].
This paper focuses on the problem of finding efficient CFs.

Consider a two-channel1 noisy recording of a target
whose position is fixed; this recording is described through

xL(n) = {hL ∗ s}(n) + yL(n), (1)
xR(n) = {hR ∗ s}(n) + yR(n) (2)

where n is the time index; ∗ denotes the convolution; xL and
xR are, respectively, the signals from the left and right micro-
phones; s is the target signal; and yL and yR are the remaining

This work was supported by the Czech Science Foundation through
Project No. 14-11898S.

1For simplicity, we consider only two channels, but the ideas of this paper
can be generalized to a higher number of channels.

signals commonly referred to as noise. hL and hR denote the
microphone-target impulse responses that depend on the tar-
get’s position and on the acoustical environment.

A CF consists of two filters, gL and gR. Its output is gL ∗
xL − gR ∗ xR and should not contain any contribution of s.
Typically, the selection of gL and gR is such that gL ≈ hR and
gR ≈ hL. A more popular option is gL ≈ hR ∗h−1

L ∗ δ(n−d)
and gR(n) = δ(n − d) (the delayed unit impulse); see, e.g.,
[1, 4, 5] or other alternatives in [6, 7]. Here, h−1

L denotes
the inverse filter of hL, and grel = hR ∗ h−1

L corresponds to
the relative impulse response between the microphones. The
latter need not be causal, so it is practical to select d > 0;
typically, d = 20.

Since gL and gR depend on hL and hR, they must be esti-
mated from data recorded on-site. Using a noise-free record-
ing of the target (yL = yR = 0), the filters can be esti-
mated using least squares [8]; frequency-domain estimates
from [1, 4] allow for the presence of stationary noise. The
challenge is to compute or update the filters when directional
and non-stationary noise is present. Blind methods can be
used [9, 10], however, since hL and hR are typically long and
dense, the statistical error due to blind estimation may rad-
ically deteriorate the efficiency of the estimated CF. Recent
efforts have therefore been made to lower the dimensionality
of that problem using prior knowledge [11, 20, 25].

In this paper, we show that it is possible to derive CFs that
have many coefficients equal to zero (sparse CFs) while their
cancellation performance is only slightly worse compared to
dense CFs of the same length. The sparse CF could be seen
as a vector of a low-dimensional subspace, where the dimen-
sion is equal to the number of nonzero coefficients of the CF.
We assume that the support (indices of nonzero coefficients)
of the sparse CF is given as prior knowledge, and, based on
this, we propose a semi-blind approach to estimate the CF
from noisy data. We show by experiments that the filter is
significantly better compared to a dense CF when both are es-
timated blindly. Simultaneously, the semi-blind estimation is
computationally simpler than the blind estimation.

In the following section, we discuss several approaches to
compute sparse CFs from a noise-free recording using least
squares penalized or constrained by sparsity-inducing norms.
Two greedy approaches are proposed as well. The filters are
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Fig. 1. An example of grel estimated using LS and LASSO (see
Sections 2.1 and 2.2). The data were recorded in a room with T60 =
800 ms, distance between microphones was 16 cm, and distance of
target from microphones was 2 m.

assessed on real-world recordings in Section 3. In Section
4, the semi-blind approach is described and experimentally
verified.

2. SPARSE TARGET-CANCELLATION FILTERS

Assume now that xL(n) and xR(n), n = 1, . . . , N , are noise-
free recordings of the target signal. We focus on the design
of CFs through an approximation (estimation) of grel. We
assume that grel is nearly sparse. Although this is not guar-
anteed in general, such an assumption is often met even in
highly reverberated rooms; see Fig. 1. When the microphones
are close to each other, grel has a shape that is similar to that
of a delayed unit impulse. The most significant coefficients of
grel tend to be concentrated around the beginning of the filter
due to direct path and early reflections of the target signal.

2.1. Least Squares Estimator

The least squares estimate of grel is given by elements of the
vector

ĝLS = argmin
g

‖XLg − xR‖22 (3)

where XL is the N × L Toeplitz matrix whose first col-
umn and first row are, respectively, [xL(1), . . . , xL(N)]T

and [xL(1), 0, . . . , 0], xR = [xR(1), . . . , xR(N)]T , and L
denotes the length of g. The solution is ĝLS = R−1p where
R = XT

LXL/N is a square L × L symmetric Toeplitz
matrix and p = XT

LxR/N . Hence, ĝLS also satisfies
‖RĝLS − p‖22 = 0, so we can recast (3) as

ĝLS = argmin
g

‖Rg − p‖22. (4)

The latter formulation is useful for defining the sparse esti-
mates of grel. These will be obtained through altering (4).

2.2. Sparse Approximations

LASSO (Least Absolute Shrinkage and Selector Opera-
tor, [13]) is the optimization program given by

ĝLASSO = argmin
g

‖g‖1 w.r.t. ‖Rg − p‖22 ≤ ε, (5)

where ε ≥ 0. This procedure is easy to interpret: The con-
straint ‖Rg − p‖22 ≤ ε relaxes the property of gLS, that is
‖RĝLS − p‖22 = 0, while the sparsity-inducing �1-norm is
minimized. For ε = 0, ĝLASSO coincides with ĝLS. On
the other hand, there exists a sufficiently large ε such that
ĝLASSO = 0; see the example in Fig. 1.

A program equivalent to (5) in the sense that the sets of
solutions are the same for all possible choices of parameters
is called Basis Pursuit Denoising (BPDN) and is given by [14]

ĝBPDN = argmin
g

‖Rg − p‖22 + τ‖g‖1, (6)

where τ ≥ 0. However, the correspondence between the pa-
rameters τ and ε is not trivial and is possibly discontinuous
[15].

Weighted LASSO (WLASSO) [16] is a modified variant
of (5) given by

ĝWLASSO = argmin
g

‖Wg‖1 w.r.t. ‖Rg−p‖22 ≤ ε, (7)

where W is a diagonal matrix with positive weights w1, . . . , wL

on its diagonal. The weights allow to the placement of dif-
ferent emphasis on each filter coefficient. In our case, we
select

wi = |(ĝLS)i + ς|−1, i = 1, . . . , L, (8)

where (·)i denotes the ith element of the argument, and ς > 0
is a small positive constant to avoid division by zero. This
choice means that “small” coefficients of ĝLS are strongly
forced to be zero, and vice versa. We will show later by exper-
iments that this choice helps to increase the number of zero
coefficients in ĝWLASSO while the cancellation performance
of the filter is preserved.

It is also possible to distribute the filter coefficients into
groups and replace the �1-norm by the group �1,2-norm [17]
defined as ‖g‖1,2 =

∑K
k=1 ‖fk‖2, where the elements of fk

belong to the kth group and g = [fT1 , . . . , fTK ]T . The penal-
ized solution is then given by

ĝGROUP = argmin
g

‖Rg − p‖22 + τ‖g‖1,2, (9)

which is equivalent to (6) iff K = L, that is, when each fil-
ter coefficient is assigned to its individual group (singleton).
With regard to the expected shape of grel (see Fig. 1), our
selection of groups is such that first D elements of g are as-
signed to the first group f1 while the other elements are sin-
gletons.

2.3. Greedy Methods

We propose two greedy approaches to find sparse approxima-
tions of grel satisfying the constraint ‖Rg − p‖22 ≤ ε. The
problem to solve is

ĝ = argmin
g

‖g‖0 w.r.t. ‖Rg − p‖22 ≤ ε (10)
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Algorithm 1: The NAIVE greedy algorithm.
Input: R,p,gLS, ε
Output: gI−1

α = 0, g0 = gLS, I = 0, Γ = ∅;
while α < ε do

Γ = Γ ∪ argmini |(gI)i|;
g(I+1) = argming

{
‖Rg − p‖22

∣∣∣(g)i = 0 for i ∈ Γ
}

;

α = ‖Rg(I+1) − p‖22;
I = I + 1;

end

Algorithm 2: The MINERR greedy algorithm.
Input: R,p,gLS, ε
Output: gI−1

α = 0, g0 = gLS, I = 0, Γ = ∅;
while α < ε do

k = argmini

{
ming ‖Rg − p‖22

∣∣∣(g)j = 0, j ∈ Γ ∪ {i}
}

;

Γ = Γ ∪ {k};

g(I+1) = argming
{
‖Rg − p‖22

∣∣∣(g)i = 0 for i ∈ Γ
}

;

α = ‖Rg(I+1) − p‖22;
I = I + 1;

end

where ‖g‖0 is equal to the number of nonzero elements in
g (the �0 pseudonorm). Although greedy algorithms are not
guaranteed to solve (10) in general, they may successfully
find suitable suboptimal results [18].

The first approach, denoted as NAIVE, starts from the
least squares solution ĝLS. It selects the smallest (in absolute
value) nonzero element of ĝLS to constrain it to be zero and
updates ĝ as the least squares solution under the constraint.
This step is repeated until ‖Rĝ − p‖22 ≤ ε. The algorithm is
summarized in Algorithm 1.

A more sophisticated greedy algorithm, denoted as MIN-
ERR, also starts from ĝLS. Compared to NAIVE, in each step,
the algorithm selects the coefficient whose zeroing causes the
smallest increase of ‖Rĝ − p‖22. It is summarized in Algo-
rithm 2.

In experiments, we use freely available online implemen-
tations for some of the considered minimization problems.
We optimize the LASSO criterion via the �1 magic tool-
box [21]. The BPDN criterion is minimized using the SLEP
package [22]. The criteria WLASSO and GROUP are opti-
mized using the SPArse Modeling Software (SPAMS) [23].

3. EXPERIMENTAL COMPARISON

The goal of this section is to find CFs with a minimum num-
ber of nonzero coefficients whose cancellation performance
is close to that of ĝLS. We compare the methods for comput-
ing sparse CFs from noise-free recordings introduced in the
previous section.

The cancellation performance of each CF is evaluated in
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Fig. 2. Number of nonzero coefficients with respect to L av-
eraged over all recordings.

terms of Noise-to-Signal Ratio (NSR) measured in the output
of the CF when the original noise-free recording of a target
speaker (used to compute the filter) is mixed with a speech
signal of another speaker. In this experiment, the signals are
mixed so that the input NSR is 0 dB.

For each L, the sparse CFs are unified through the pa-
rameter τ or ε so that each filter loses exactly 1.5 dB of the
output NSR compared to the optimal ĝLS. In other words, the
cancellation performance loss due to CF sparsity is 1.5 dB in
terms of the NSR. The number of nonzero coefficients is then
the criterion of our interest.

We utilize two distinct datasets of multichannel record-
ings of speech performed in real-world situations. The loca-
tions of sound sources (target and interferer) are fixed during
the recordings. Each source is recorded separately, which al-
lows us to create an arbitrary mixture and evaluate the NSR.

The first dataset originates from the task ”Robust blind
linear/non-linear separation of short two-sources-two-micro-
phones recordings” of SiSEC 20102. We take 24 speech
recordings with various mutual positions of the speakers
where the distance of the speakers to microphones ranges
from 0.9 m to 1.75 m. The recordings are approximately
1.5-3 s long, sampled at 16 kHz. The second dataset is de-
scribed in [20]. It contains recordings from an office room
with T60 ≈ 490 ms. There are 32 recordings, 16 for a male
target voice interfered with male speech and 16 for a female
target voice and interfered with another female speaker. Four
channels are available; here we use channels 1 and 4. In total,
we use 56 recordings to perform the experiment.

The average number of nonzero coefficients of the com-
puted CFs depending on the filter length L is shown in Fig. 2.
The sparsest CFs were obtained using the greedy algorithms
NAIVE and MINERR. WLASSO yields similar results. The

2http://sisec2010.wiki.irisa.fr
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filters by LASSO and BPDN have significantly higher num-
bers of nonzero coefficients. The results of GROUP (D = 30)
are between those of BPDN and WLASSO.

The results indicate that the inclusion of some prior infor-
mation about the desired form of the CF helps us improve its
sparsity [19]. To this end, WLASSO, NAIVE and MINERR
use the properties of the least squares estimate ĝLS.

4. SEMI-BLIND NOISE EXTRACTION

This section presents a method for blindly estimating an effi-
cient sparse CF from noisy data. This method is based on an
assumption that the support of the filter is known. Such prior
information can be obtained, for example, during target-only
intervals; cf. the previous section. This approach is compared
with a similar one that is completely blind. The experiments
are evaluated on the data described in the preceding section.

The method derived here is based on the time-domain
blind audio separation approach where an observation space
is defined; it is decomposed into independent components us-
ing Independent Component Analysis (ICA) [24, 25]. The
observation space is spanned by rows of a data matrix

B =

⎡
⎢⎢⎢⎢⎢⎣

xL(1−D1) xL(2−D1) . . . xL(N −D1)
xL(1−D2) xL(2−D2) . . . xL(N −D2)

...
...

...
xL(1−DP ) xL(2−DP ) . . . xL(N −DP )
xR(1− d) xR(2− d) . . . xR(N − d)

⎤
⎥⎥⎥⎥⎥⎦
,

(11)
where D1, . . . , DP are integer delays. To find the indepen-
dent components, the BGSEP algorithm from [26] is used. It
yields a (P + 1) × (P + 1) de-mixing matrix W, and the
independent components are C = WB.

Each row of W corresponds to a two-input-single-output
CF in which the nonzero coefficients of gL have indices
D1, . . . , DP and gR = δ(n − d). The corresponding row of
C is the output of this filter.

To select the CF (the row of W) that efficiently cancels
the target, we use the same idea as in [25]. The CF is selected
according to the largest element (in absolute value) of the last
column of W. This element determines the contribution of
xR in the filter output, which must be significant: Signals
from both microphones must be involved in the filter’s output
to achieve spatial null in the target direction.

When no prior knowledge is available, we cannot prefer
any special choice of D1, . . . , DP . Therefore, blind methods
such as the one in [24] select all integer delays from 0 through
L where L is the length of the CF. Hence, we consider this
blind approach where Di = i−1, i = 1, . . . , L, and L = 100.

In the semi-blind approach, we select D1, . . . , DP as
indices of nonzero coefficients of the CF computed by MIN-
ERR from a target-only recording. The reason to choose
MINERR is that it yields the minimum number of nonzero
coefficients in the computed CF as shown in the preceding

section. P depends on the size of the support and ranges
between 10 and 20.

The results of the comparison, with respect to different
values of the initial NSR, are shown in Fig. 3. The results
obtained by the proposed semi-blind approach are, on aver-
age, better by 2 dB than those by the blind approach. We
also include the results of the CFs computed from noise-free
data (of the length L = 100), by LS and MINERR. The latter
results (in terms of the NSR improvement) are independent
of the initial NSR, and LS is by 1.5dB better than MINERR,
which agrees with the selected tolerance. Note that the blind
approach could theoretically achieve the performance of LS
while the semi-blind approach is limited by that of MINERR.
However, the statistical error due to ICA causes that the semi-
blind approach is finally better that the blind one. Moreover,
the computational savings are substantial, because the com-
plexity of this time-domain approach rapidly grows with P .
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5. CONCLUSIONS

We have presented sparse CFs which are able to achieve target
suppression comparably to their dense counterparts and have
up to 90 % of the taps in the impulse response equal to zero.
We have also proposed a semi-blind method for estimation of
sparse CFs from noisy signals which assumes prior knowl-
edge of the filter support. The resulting sparse CFs achieve
better target suppression (by more than 2 dB NSR) compared
to dense CFs estimated by a fully blind approach.

We recommend another paper [27] of ours presented at
this conference as material closely related to the topic of the
present paper.
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