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ABSTRACT
This paper presents an iterative alternating least-squares

(ALS) algorithm for alternately solving two different least-
squares approximate joint diagonalization (LS-AJD) prob-
lems for application to convolutive frequency-domain blind
source separation (BSS). The constrained forward-model LS-
AJD criterion is minimized to estimate the mixing matrix by
using the method of Lagrange multipliers. The other criterion,
based on backward modeling, is to find the diagonal matrices
by the method of least squares. The method of Lagrange mul-
tipliers is well suited for accelerating the convergence of the
ALS algorithm. The correlation between the interfrequency
power ratios is used to prevent misalignment permutation for
the new BSS. Finally, we compare our results with those of
conventional BSS in highly reverberant environments.

Index Terms— Blind source separation (BSS), convo-
lutive audio mixture, joint diagonalization, alternating least-
squares (ALS) algorithm, method of Lagrange multipliers

1. INTRODUCTION

Blind source separation (BSS) is a technique used to recover
source signals from observed signals that are modeled as an
unknown convolutive mixture of unknown quasistationary
source signals. In such cases, the quasistationary signals
are modeled as an approximately stationary behavior over
a short time interval, known as an epoch. Minimization of
the least-squares (LS) criterion requires the mixing matrix
to be mathematically equivalent for approximate joint di-
agonalization (AJD) of the cross-spectral density matrices
of the observed signals. The AJD problem [1, 2, 3, 4, 5]
entails finding the diagonalizing matrix and diagonal matri-
ces. The LS-AJD estimate is suitable for blind separation
of quasistationary sources by estimating the epoch-by-epoch
cross-spectral density matrices of the source signal and the
mixing matrix simultaneously. An alternating least-squares
with projection (ALSP) algorithm for convolutive BSS in the
frequency domain has been recently developed [1]. A large
number of observed signals are required to achieve a good
separation performance in the Rahbar LS-AJD estimate. The

main drawback, however, is its slow convergence. With the
ALSP algorithm [1], after the unconstrained LS estimation
problem is solved by the method of least squares, the con-
strained LS estimation problem is solved by projecting the
unconstrained LS estimate onto the constraint set Ω ⊂CJ2×1,
defined as Ω =

{
vec{Φ}|Φ=vvH , v∈CJ×1, ∥v∥22=1

}
, where

vec{A} forms a column vector by stacking the columns of
the matrix A. This operation is fulfilled by using the power
method.

In this paper, we introduce two different LS criteria into
the AJD problem. The first is a constrained forward-model
LS-AJD criterion for estimating the mixing matrix by us-
ing the method of Lagrange multipliers. The second is a
backward-model LS-AJD criterion for determining the di-
agonal matrices by using the method of least squares. The
mixing matrix obtained from the former LS-AJD estimate
must be nonsingular to find a full-rank separated matrix.
Therefore, if the mixing matrix is not of full rank, it can be
replaced by a full-rank matrix once every iteration before
minimizing the latter LS-AJD criterion. The full-rank matrix
in our ALS algorithm can lead to stability. The correlation
between the interfrequency power ratios [6] is used to solve
the permutation problem. The separation performance of the
new BSS, in which the number of microphones is set to that
of the sources, is demonstrated using artificial room impulse
responses (RIRs).

2. PROBLEM FORMULATION AND PREVIOUS
WORK ON LS-AJD-BASED BSS

In the convolutive mixing model between N sources s1(t), s2
(t), · · · , sN(t) and J microphones x1(t), x2(t), · · · , xJ(t) at time
t, assuming that hi j(t) is a stable and causal non-minimum-
phase mixing-filter impulse response from the jth source to
the ith microphone without changing over the entire observa-
tion interval, we obtain the observed signal at the ith micro-
phone as xi(t) =

∑N
j=1 hi j(t) ∗ s j(t)+ni(t), where the sources

are zero mean, second-order quasistationary signals [1]. In
addition, the sources are independent of each other, J≥N≥2,
the asterisk ∗ denotes time-domain convolution, and an addi-
tive white Gaussian noise (AWGN) ni(t) with mean zero and
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variance σ2 is independent of the sources. If the number of
the discrete Fourier transform (DFT) points, as represented
by K, is significantly larger than the length of the impulse re-
sponse hi j(t), the time-domain convolution is approximately
converted to multiplication by short-time Fourier transform
(STFT) as

x(ωk,m) ≈ H(ωk)s(ωk,m) + n(ωk,m) (1)

where ωk = 2πk/K, k = 0, 1, · · · ,K−1, xi(ωk,m), s j(ωk,m),
and ni(ωk,m) are the STFTs of xi(t), s j(t), and ni(t) at
time epoch m, hi j(ωk) is the DFT of hi j(t), s(ωk,m) =
[s1(ωk,m), s2(ωk,m), · · · , sN(ωk,m)]T is the N × 1 vector
of sources, H(ωk) is the J × N mixing matrix of the transfer
function from the N sources to the J microphones, the J × 1
observed signal vector is defined by x(ωk,m)= [x1(ωk,m), x2
(ωk,m), · · · , xJ(ωk,m)]T , and n(ωk,m)= [n1(ωk,m), n2(ωk,m),
· · · , nJ(ωk,m)]T is the J × 1 vector of AWGN. All observed
signals are available in the time epoch interval 1 ≤ m ≤ M,
where M is the total number of time epochs. The cross-
spectral density matrix of the source signal Ps(ωk,m) =
E[s(ωk,m)s(ωk,m)H] ∈ RN×N is diagonal, where E[·] and
the superscript H denote expectation operation and Hermitian
transpose, respectively.

To separate the sources at each frequency bin ωk inde-
pendently in BSS, premultiplication of H(ωk) by the N × J
unmixing matrix W(ωk) yields

W(ωk)H(ωk) = Π(ωk)D(ωk) (2)

where Π(ωk) ∈ RN×N is a frequency-dependent permutation
matrix and D(ωk)∈CN×N is a scale or phase arbitrary diagonal
matrix. Let Px(ωk,m) ∈ CJ×J define the cross-spectral density
matrix of the observed signal at point (ωk,m)

Px(ωk,m) = H(ωk)Ps(ωk,m)H(ωk)H + σ2I (3)

where I denotes the J × J identity matrix, and H(ωk) and
Ps(ωk,m) are assumed to be nonsingular. Although a noise-
free cross-spectral density matrix can be obtained as Px(ωk,m)−
σ2I=H(ωk)Ps(ωk,m)H(ωk)H for the number of microphones
being larger than that of sources, where σ2 is the smallest
eigenvalue of the matrix Px(ωk,m), it cannot be obtained for
the number of microphones being equal to that of the sources.
If we find a diagonalizing matrix B(ωk) ∈ CJ×N and diagonal
matrices Λ(ωk,m) ∈ RN×N to satisfy

Px(ωk,m) − σ2I = B(ωk)Λ(ωk,m)B(ωk)H (4)

with the scale constraint ∥b j(ωk)∥2 = 1, from (2), the re-
lationship between B(ωk) and H(ωk) becomes B(ωk) =
H(ωk)D(ωk)Π(ωk), where b j(ωk) is the jth column of B(ωk),
∥ · ∥2 denotes Euclidean norm, and

W(ωk)B(ωk) = I. (5)

In the frequency-domain LS-AJD-based BSS [1], the
Welch periodogram method [7] is used to approximate the
cross-spectral density matrix of the observed signal. After the
M estimated power spectral density matrices are obtained by

dividing all observed signals into M time epochs, the estima-
tion value is normalized. By using the normalized estimation
value, the measurement error at point (ωk,m) is given by

E(ωk,m) = P̃x(ωk,m) − B(ωk)Λ(ωk,m)B(ωk)H . (6)

The diagonalizing matrix B(ωk) and M associated diagonal
matrices Λ(ωk, 1),Λ(ωk, 2), · · · ,Λ(ωk,M) are estimated by
minimizing the sum of the measurement error squares

B̂(ωk), Λ̂(ωk,m)= argmin
B(ωk), Λ(ωk ,m)

M∑
m=1

∥E(ωk,m)∥2F (7)

subject to the scale constraint
∥∥∥b j(ωk)

∥∥∥
2=1 over a significant

number of time epochs M at each frequency bin ωk.

3. LS-AJD ESTIMATE FOR BSS AND DERIVATION

The new LS-AJD estimate also differs from the conventional
LS-AJD estimates in that the former includes two different
LS criteria. The first is used to estimate the mixing matrix
and the second is used to estimate the cross-spectral density
diagonal matrix of the source signal. The ALS algorithm al-
ternates between minimization of the constrained LS criterion
with respect to the mixing matrix on the previously obtained
estimate of the diagonal matrix and the minimization of the
second LS criterion with respect to the diagonal matrix on
that of the mixing matrix.

The combined response of the mixing filter with the um-
mixing filter in tandem must satisfy a minimization of the fol-
lowing error square

e(ωk) = ∥I −W(ωk)B(ωk)∥2F . (8)

Minimizing (8) with respect to the unmixing matrix W(ωk)
yields the unmixing matrix

W(ωk) =
(
B(ωk)HB(ωk)

)−1
B(ωk)H . (9)

The minimum error square emin(ωk) is found to be emin(ωk)=
0 only if B(ωk)HB(ωk) has full-rank N. On the contrary,
if the rank of B(ωk)HB(ωk) is r < N, the value of the er-
ror square is greater than emin(ωk). Therefore, in addition to
the scale constraint

∥∥∥b j(ωk)
∥∥∥

2 = 1, we impose the constraint
rank

(
B(ωk)HB(ωk)

)
= N on (7), where rank(A) denotes the

rank of matrix A. That is, B(ωk)HB(ωk) obtained from min-
imizing (7) must be nonsingular to find emin(ωk) = 0. In the
new BSS, B(ωk) can be replaced by a full-rank matrix only
once every iteration before estimating the diagonal matrix, but
only if B(ωk)HB(ωk) is not of full rank.

Speech is characterized by spectrum envelope peaks,
known as formants, most of which are in the low-frequency
range. By normalizing the estimated point-by-point cross-
spectral density matrix of the observed signal P̂x(ωk,m) by
its magnitude [1], the spectrum envelope becomes flat in the
frequency band. Our epoch-by-epoch normalization differs
from the point-by-point normalization used in [1]. Without
losing the characteristics of such a peak produced in speech,
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our objective is to normalize P̂x(ωk,m) by the maximum
magnitude of all observed signals at the time epoch m

P̃x(ωk,m) =
P̂x(ωk,m)

max
ωk

∥∥∥P̂x(ωk,m)
∥∥∥

F

(10)

where P̂x(ωk,m) is estimated by the Welch periodogram
method. The spectrum envelope derived by our normal-
ization can approximate the true spectrum envelope of the
observed signal.

The LS-AJD problem is used to find the diagonalizing
matrix B(ωk) and M associated diagonal matrices Λ(ωk, 1),Λ
(ωk, 2), · · · ,Λ(ωk,M) by minimizing the cost function

ξ(ωk) =
M∑

m=1

∥E(ωk,m)∥2F +2
N∑

i=1

γi

(
bi(ωk)Hbi(ωk) − 1

)
(11)

at each frequency bin ωk over M time epochs, where γi is the
Lagrange multiplier. By using the Khatri-Rao (KR) product,
we can rewrite (11) as

ξ(ωk)=
M∑

m=1

∥ε(ωk,m)∥22+2
N∑

i=1

γi

(
vec {I}T Re (gi(ωk))−1

)
(12)

where
ε(ωk,m) = r̃x(ωk,m) −G(ωk)d(ωk,m) (13)
r̃x(ωk,m) = vec

{
P̃x(ωk,m)

}
(14)

G(ωk) =
[
b1(ωk)∗⊗b1(ωk), · · · ,bN(ωk)∗⊗bN(ωk)

]
(15)

d(ωk,m) = [λ1(ωk,m), λ2(ωk,m),· · · ,λN(ωk,m)]T (16)
G(ωk)d(ωk,m) = vec

{
B(ωk)Λ (ωk,m) B(ωk)H

}
=

[
B(ωk)∗ ⊙ B(ωk)

] · d(ωk,m), (17)
the superscript ∗, ⊗, and ⊙ denote the complex conjugate,
Kronecker product, and KR product respectively; λi(ωk,m)
denotes ith diagonal element of Λ(ωk,m); and g j(ωk) denotes
jth column of G(ωk).

To apply the ALS algorithm, zi(ωk) and T(ωk) are defined
by

zi(ωk) = [λi(ωk, 1), λi(ωk, 2), · · · , λi(ωk,M)]T (18)
T(ωk) = [r̃x(ωk, 1), r̃x(ωk, 2), · · · , r̃x(ωk,M)] . (19)

The ALS algorithm alternates the following two phases. In
phase one, to minimize (12) with respect to g j(ωk) while
keeping its other columns gi(ωk) and zi(ωk) fixed and defin-
ing

F j(ωk) = T(ωk) −
N∑

i=1, i, j

gi(ωk)zi(ωk)H , (20)

by using (18) and (19), we have the constrained LS estimation
problem

ξ(ωk)=
∥∥∥F j(ωk)−g j(ωk)z j(ωk)H

∥∥∥2
F+2

N∑
i=1

γi

(
vec {I}TRe(gi(ωk))−1

)
.

(21)
This problem is solved by the method of Lagrange multipliers
as follows:

ĝ j(ωk) =
1∥∥∥z j(ωk)

∥∥∥2
2

[
F j(ωk)Re

(
z j(ωk)

)
−1

J

(
vec {I}TRe

(
F j(ωk)

)
Re

(
z j(ωk)

)
−
∥∥∥z j(ωk)

∥∥∥2
2

)
vec {I}

]
. (22)

That is, differentiating (21) with respect to g j(ωk), setting the
derivative to zero, then substituting the result into the con-
straint vec{I}TRe

(
g j(ωk)

)
− 1 yields ĝ j(ωk). After minimizing

(12) with respect to each column of G(ωk) successively while
keeping the others fixed, (22) is repeated until G(ωk) changes
by less than ϵG between iterations. After the convergence cri-

terion is satisfied,
∥∥∥∥unvec

{
ĝ j(ωk)

}
− b j(ωk)b j(ωk)H

∥∥∥∥2

F
is min-

imized using the power method [8] to find b j(ωk) for j =
1, 2, · · · ,N only once every iteration, where unvec{a} forms
a matrix from the column vector a.

The singular value decomposition (SVD) of the matrix
B(ωk) is given by

B(ωk) = Vr(ωk)Σr(ωk)Ur(ωk)H (23)

where Vr(ωk), Ur(ωk), and Σr(ωk) denote unitary matrices
and the diagonal matrix

Vr(ωk) = [v1(ωk), v2(ωk), · · · , vr(ωk)] (24)
Ur(ωk) = [u1(ωk),u2(ωk), · · · ,ur(ωk)] (25)
Σr(ωk) = diag (σ1(ωk), σ2(ωk), · · · , σr(ωk)) (26)
σ1(ωk) ≥ σ2(ωk) ≥ · · · ≥ σr(ωk) > 0. (27)

Because of the condition
∥∥∥b j(ωk)

∥∥∥
2 = 1 for j = 1, 2, · · · ,N,

the trace of Σr(ωk) is equal to
√

N, that is, tr [Σr(ωk)] =
√

N.
We form an orthonormal set vr+1(ωk), vr+2(ωk), · · · , vN(ωk)
orthogonal to the orthonormal set v1(ωk), v2(ωk), · · · , vr(ωk).
Similarly, we form an orthonormal set ur+1(ωk),ur+2(ωk), · · · ,
uN(ωk) orthogonal to the orthonormal set u1(ωk),u2(ωk), · · · ,
ur(ωk). To realize the minimum error square emin(ωk), if the
rank of B(ωk)HB(ωk) is r <N, B(ωk) can always be replaced
by the following full-rank matrix

V(ωk)Σ(ωk)U(ωk)H =

√
N

√
N+δ(ωk)N

·
[
Vr(ωk),V f (ωk)

] ([Σr(ωk) 0
0 0

]
+δ(ωk)I

)[
Ur(ωk),U f (ωk)

]H

constructed by the Gram-Schmidt orthonormalization pro-
cess, where we choose δ(ωk) in the range δ(ωk)>0;√

N/
(√

N+δ(ωk)N
)

in the right-hand side is required to sat-

isfy the condition tr [Σ(ωk)]=
√

N, and

V f (ωk) = [vr+1(ωk), vr+2(ωk), · · · , vN(ωk)] (28)
U f (ωk) = [ur+1(ωk),ur+2(ωk), · · · ,uN(ωk)] . (29)

Because our LS-AJD estimate guarantees (5), it fol-
lows from (4) that pre- and post-multiplying Λ(ωk,m) by
W(ωk)B(ωk) and (W(ωk)B(ωk))H yields

Λ(ωk,m) =W(ωk)B(ωk)Λ(ωk,m)B(ωk)HW(ωk)H

=W(ωk)
(
Px(ωk,m) − σ2I

)
W(ωk)H . (30)

This equation is satisfied under the correct estimates of W(ωk)
and Px(ωk,m)−σ2I. By using the estimate of Px(ωk,m), let
Ψ(ωk,m) define a measurement error

Ψ(ωk,m) =W(ωk)P̃x(ωk,m)W(ωk)H − Λ(ωk,m). (31)
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Table 1. Procedure for applying the LS-AJD-based BSS.
1) Normalize P̂x(ωk,m) by (10) for m=1, 2, · · · ,M.
2) Minimize (21) to find ĝ j(ωk) by the method of Lagrange
multipliers for j = 1, 2, · · · ,N.

3) Go to step 2 until G(ωk) changes by less than ϵG between
iterations.

4) Minimize
∥∥∥∥unvec

{
ĝ j(ωk)

}
− b j(ωk)b j(ωk)H

∥∥∥∥2

F
to find b j(ωk)

by the power method for j=1, 2, · · · ,N.
5) If rank

(
B(ωk)HB(ωk)

)
= r < N, construct the orthonormal

sets vr+1(ωk), vr+2(ωk), · · · , vN(ωk) and ur+1(ωk), ur+2(ωk),
· · · ,uN(ωk) by the Gram-Schmidt process.
Then replace B(ωk) with V(ωk)Σ(ωk)U(ωk)H .

6) Compute W(ωk) from B(ωk).
7) Minimize

∑M
m=1 ∥Ψ(ωk,m)∥2F to find Λ̂(ωk,m) by the method

of least squares.
8) Go to step 2 until (21) changes by less than ϵC between
iterations.

9) Solve the scale problem to find D(ωk)−1W(ωk).
10) Resolve the permutation ambiguity to find
Π(ωk)−1D(ωk)−1W(ωk).
11) Convert e− jπkΠ(ωk)−1D(ωk)−1W(ωk) in the time domain
by the inverse FFT to realize a delayed unmixing filter.

While keeping W(ωk) fixed, we find

Λ̂(ωk,m) = diag
[
W(ωk)P̃x(ωk,m)W(ωk)H

]
(32)

by minimizing the LS criterion
∑M

m=1 ∥Ψ(ωk,m)∥2F with re-
spect to Λ(ωk,m) [9, 10], where diag[A] denotes the diagonal
matrix of the matrix A and W(ωk) is calculated by (9). The
ALS algorithm is repeated until (21) changes by less than ϵC
between iterations. The procedure of the LS-AJD estimate is
shown in Table 1.

4. SIMULATION RESULTS

We generated artificial RIRs from three sources to three mi-
crophones in a room by using the image method [11, 12] at a
sampling rate of 8 kHz. The room size was 4.45×3.55×2.5 m.
The three loudspeakers were located at [3.35, 1.36, 1.2],
[2.83, 2.81, 1.2], and [1.14, 2.28, 1.2]. The three micro-
phones were placed at [2.34, 1.78, 1.2], [2.17, 1.88, 1.2], and
[2.17, 1.68, 1.2]. The speech dataset duration was 1 000
s [13]. The Hanning window was used for STFT. The
parameter was chosen empirically as an 8192-point FFT,
ϵG = ϵC = 10−6, and δ(ωk) = σr(ωk). In the new, Rahbar,
and Parra BSSs [1, 9], the scale problem was solved by nor-
malizing each row vector of W(ωk) at each frequency bin.
The new BSS solved the permutation problem by using the
approach based on the correlation between the interfrequency
power ratios [6]. To estimate Px(ωk,m), the number of 80%
overlapping frames within each epoch was set to 2 for the
new and the Rahbar BSSs. The signal-to-noise ratio (SNR)
was determined by the ratio of the desired signal power and
the power of interference plus the noise component in the
output signals [3]. When the optimum permutation and the
optimum unmixing matrix were available, the optimum out-

Table 2. Comparison of the average output SIR, the aver-
age CPU time per frequency bin, and the average number of
iterations per frequency bin with the conventional BSS for
SNR≈20 dB, N= J=3, and 8192-point FFT.

Method Reverberation time [ms]
100 300 500 700 900

Overall input SIR [dB]
−2.59 −3.39 −3.63 −3.66 −3.62

New
Output SIR [dB] 17.43 17.23 15.27 13.62 11.93
CPU time [s] 0.124 0.179 0.182 0.190 0.206
Iterations 4.77 5.25 6.04 6.33 7.03

Rahbar [1]
Output SIR [dB] 10.13 4.65 3.25 2.67 1.56
CPU time [s] 3.544 13.905 14.979 16.336 17.246
Iterations 110.41 147.05 157.12 158.18 162.81

Parra [9, 14]
Output SIR [dB] 3.69 1.37 0.29 −0.46 −0.67
CPU time [s] 0.073 0.080 0.085 0.108 0.117
Iterations 127.38 136.72 146.21 158.38 171.48

put signal-to-interference ratio (SIR) was equal to the SNR
[3]. The simulation program was coded in C programming
language and run on an Intel Core i7-2600 3.4 GHz processor.

We applied the new method in reverberant environments.
Table 2 shows the average output SIR, the average CPU time
per frequency bin, and the average number of iterations per
frequency bin until convergence for the batch implementa-
tions of these BSSs was achieved. We achieved good sepa-
ration performance, although the performance was degraded
for reverberation times longer than 300 ms. Compared with
the Rahbar BSS, the new BSS increased to a maximum of
12.58 dB in a 300-ms reverberant environment. The reverber-
ation dominates the separation performance in the long rever-
beration time range. Therefore, the separation performance
worsens as reverberation time increases. The convergence of
the ALSP algorithm was very slow. A striking improvement
was apparent by using our algorithm such that convergence
to an LS-AJD estimate was made within approximately 5.25
iterations per frequency bin in a 300-ms reverberant environ-
ment. We note that the complexity of the new BSS is at most
0.01 times that of the Rahbar BSS.

5. CONCLUSION
We have exploited an iterative ALS algorithm for the convo-
lutive frequency-domain blind separation of quasistationary
sources to include two different LS criteria. The ALS algo-
rithm alternates between the minimization of the constrained
LS criterion with respect to the mixing matrix on the previ-
ously obtained estimate of the diagonal matrices and the min-
imization of the second LS criterion with respect to the diag-
onal matrices on that of the mixing matrix. In numerical ex-
amples, we showed that the ALS algorithm provides superior
convergence properties and offers an improvement in highly
reverberant environments.
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