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ABSTRACT

A myoelectric Silent Speech Recognizer is a system which
recognizes speech by capturing the electrical activity of the
human articulatory muscles, thus enabling the user to commu-
nicate silently. We recently devised a recording setup based
on electrode arrays with multiple measuring points. In this
study we show that this allows to compensate for shifts of the
recording position, which happen when the array is removed
and reattached between system training and application. We
present a method which determines the amount of recording
position shift; compensation is performed by linear interpo-
lation. We evaluate our method by running recognition ex-
periments across recording sessions and obtain a Word Error
Rate improvement of 14.3% relative on the development set
and 12.9% relative on the evaluation set, compared to using
classical session adaptation.

Index Terms— Silent Speech Interfaces, EMG, EMG-
based Speech Recognition, Adaptation, Signal Interpolation

1. INTRODUCTION

Humans use speech as their most natural method of com-
munication: It is easily produced, allows to convey a large
amount of information in a short time, and has additionally
become a means of controlling technical devices. However,
all these usages require speech to be clearly audible, which
incurs disturbance for bystanders, compromised privacy, lack
of robustness in noisy environments, and exclusion of speech-
disabled people. Over the past few years, we have developed a
Silent Speech Recognizer based on surface electromyography
(EMG), where the electrical activity of the articulatory mus-
cles is captured by EMG electrodes attached to the subject’s
face [1]. This allows to process speech even when no acous-
tic signal is produced, alleviating the issues of conventional
speech communication mentioned above.

Recently, we introduced a recording setup using electrode
arrays [2], which are grid structures with multiple EMG mea-
suring points. Here the goal is to substantially enhance the
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EMG signal processing and feature extraction, and this pa-
per is part of these efforts. We tackle session discrepancies:
Ideally, a user can pre-train the system at his or her conve-
nience, and then immediately apply it when desired. In [3]
we showed that such session-independent systems are feasi-
ble and that they can be further improved by session adapta-
tion. However, the systems presented in [3] gain robustness
from being trained on many sessions, no explanation or cor-
rection for inter-session variations is given.

In this study we use the multi-channel EMG array data
to tackle session discrepancies on a signal-oriented level: We
consider pairs of sessions, namely the source session, used to
train the recognizer, and the target session, on which recog-
nition is performed. We compute the difference between the
array positionings of source and target session and then in-
terpolate the EMG signals of the target session so that the
position shift is compensated for. This yields significant im-
provements on cross-session recognition tasks.

2. RELATED WORK

Silent Speech recognition is an emerging technology, and a lot
of research on different aspects on the topic is currently tak-
ing place. Technologies under investigation include Perma-
nent Magnetic Articulography (PMA) [4], where small mag-
nets are glued to the subject’s articulators, processing of ul-
trasound and/or optical images of the articulatory tract [5],
as well as enhancement of very quiet speech signals, e.g. by
using a stethoscopic microphone [6]. Investigations regard-
ing the EMG-based approach include the application of elec-
tromyography in special circumstances, e.g. for firefighters
who may be prevented from speaking because they wear a
breathing apparatus [7], recognition of disordered speech [8],
language-dependent challenges [9], and within the context of
our array-based recording setup, signal source decomposition
to retrace signal sources and remove artifacts [10].

3. DATA CORPUS

Our recording setup follows [2] (where it is named “Setup
B”). We use the multi-channel EMG amplifier EMG-USB2
produced and distributed by OT Bioelettronica, Italy. Two
EMG arrays are used, a chin array with a row of 8 electrodes
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Fig. 1. EMG array positioning

with 5 mm inter-electrode distance (IED), and a cheek array
with 4×8 electrodes with 10 mm IED, see figure 1. Sampling
is performed at 2048Hz.

During the recordings, which took place over the course
of several weeks, the supervisors were instructed to attach the
array as accurately as possible. Yet, it proved all but impos-
sible to hit a position to millimeter precision, or equivalently,
to measure the repositioning between sessions at a millime-
ter scale. Therefore the corpus does not contain exact infor-
mation about the repositioning between sessions: We focus
entirely on our algorithmic solution to this problem.

During recording sessions, we frequently observed that
the signals from one or several EMG channels exhibited
strong superimposed artifacts, which harm our position shift
estimation algorithm. Therefore after a recording session,
we manually checked the signals and marked those channels
which did not contain useful EMG signals (there also exist
automatic heuristics for this task [10]).

Altogether we use data from 21 recorded sessions of 4
speakers, the 5 sessions from speaker 4 are set aside for sta-
tistical evaluation. Each session consists of 160 training sen-
tences, 20 adaptation sentences, and 20 test sentences, which
are in English language and read in normal, audible speech;
additional recordings of silently mouthed speech are available
but are not used in this study since it is difficult to obtain exact
phone-level alignments for them [11], complicating applica-
tion of our position shift estimation algorithm. However note
that we ran several studies regarding the difference between
audibly spoken and silently mouthed speech, and how to deal
with it [11–14]. The training sentences may differ between
sessions, the adaptation sentences and the test sentences are
the same for each session. The audio signal is always par-
allely recorded with a close-talking microphone, EMG and
audio signal are aligned with a 50ms delay according to [15].

As in [2], our initial recordings used bipolar derivation,
where the potential difference between two adjacent chan-
nels in a row is measured. In contrast, unipolar derivation
means that the difference between each measuring point and
a neutral reference (in our experiments, the back part of the
user’s neck) is captured. Bipolar recording reduces in partic-
ular common-mode artifacts, but one also loses access to the
“raw” signal: It is possible to compute a bipolar signal from
unipolar recordings, namely by application of a simple spatial

Subset Av. session
length (sec)

# of sessions /
speakers

Total data
length (mm:ss)

Development corpus
Training 494 16/3 131:48
Adaptation 70 8/3 9:21
Test 63 8/3 8:26
Total 150 minutes

Evaluation corpus
Training 581 5/1 48:25
Adaptation 80 3/1 4:00
Test 71 3/1 3:33
Total 56 minutes

Table 1. Data corpus. Training sessions were recorded either
unipolarly or bipolarly, sessions which are used for adaptation
and testing were always recorded in unipolar configuration.

filter, but not the other way round.
Our features are based on bipolar EMG signals, see sec-

tion 4.3. During the course of our experiments, it became
clear that bipolar signals are unsuited for interpolation, so we
changed our recording setup to unipolar derivation. There-
fore we have two sets of sessions: Sessions where we used
bipolar recording can only be used as source sessions, i.e. for
recognizer training. Target sessions, on which position shift
compensation, adaptation, and testing of the recognizer is per-
formed, must have been recorded unipolarly, of course, these
session are also used as source sessions. This yields a total
of 36 pairs of training session and test session in the devel-
opment corpus and 12 pairs in the evaluation corpus. Table 1
summarizes our data.

4. POSITION SHIFT ESTIMATION AND
COMPENSATION

In this section we present the main algorithm of this paper. We
first describe how we compensate for a given position shift
between the source session and the target session, then we
describe how we determine the amount of the position shift.

4.1. Position shift compensation by linear interpolation

We intend to compute a rotation and shift for the 8 × 4-
channel cheek array, so that the EMG channels of the target
session match the channels of the source session as closely
as possible. We emphasize that it is not the goal to actually
remove and reattach the array, we rather correct the misplace-
ment on a signal processing level by computing a “virtual
shift”. Preliminary experiments indicated that interpolating
the signals of the 8-channel chin array does not improve the
recognition results; this is most likely due to the shape of this
array: All measuring points are in a single line, which makes
it difficult to robustly interpolate the signal for position shifts
perpendicular to this line. We therefore concentrate on the
4 × 8-channel cheek array and do not change the signals of
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the 8-channel chin array in any way. Only the signals of the
target session are processed, the source session remains un-
touched.

We expect the following array positioning distances be-
tween source and target session: The array may be shifted
maximally 10mm horizontally and vertically, with a step size
of 1mm. In addition, rotations around the center of the shifted
array of up to 5° are allowed, in steps of 1°. Altogether, this
yields 21 · 21 · 11 = 4851 different possibilites. Compensat-
ing for a shift requires to compute hypothetical EMG signals
at positions in-between measuring points, which is done by
linear interpolation: Assume that we need to compute the
signal xp[n] at position p = (px, py), located within a square
formed by four adjacent measuring points m1, . . . ,m4. If
x1[n], . . . , x4[n] are the measured signals at m1, . . . ,m4, we
estimate xp[n] by

xp[n] =
4∑

i=1

1
||mi − p||

· xi[n],

where ||mi − p|| is the distance between points p and mi.
We note here that this assumes that the amplitude of an EMG
signal is antiproportional to the distance between the source
and the measuring point, which is physiologically inexact, but
may nonetheless serve as a first approximation. Also note that
near the borders of the array, we must rely on a smaller set of
data points for interpolation.

4.2. Estimating the Position Shift

In order to estimate the amount of shift and rotation between
the source and the target session, we use the 20 adaptation
sentences of both sessions and proceed as follows: First, we
forced-align the parallely recorded acoustic signal in order
to obtain phone-level alignments of the EMG signals. This
is one of our standard methods, originally proposed in [15].
Then we compute the interpolated raw EMG signals for each
possible combination of shift and rotation for the 20 adapta-
tion sentences of the target session.

Now for each such shift and rotation, we compute root
mean square (RMS) features from the interpolated EMG sig-
nal, after processing it with a bipolar spatial filter. We com-
pute one RMS value for each phone: We found this approach
to give better results than using a fixed frame length and shift,
or using the TD5 features which we use for training the rec-
ognizer (see section 4.3). All computations are done channel-
wise, where we omit interpolated EMG channels affected by
channels marked as noisy (see section 3).

We similarly compute RMS features of the 20 adaptation
sentences of the source session and note that their textual con-
tent matches the content of the adaptation sentences of the tar-
get session: Thus we have a pairwise matching of the adap-
tation sentences from both sessions. Two sentences with the
same textual content yield the same number of RMS feature
frames, since they have the same number of phones.

Now we compute the correlation between the RMS fea-
tures of the source session and the interpolated target sessions
and average over all channels, except those marked as con-
taining artifacts, and over the 20 adaptation sentences. This
average correlation is a scalar value measuring the similarity
between the source session data and the interpolated target
session data, for a particular shift and rotation. We finally as-
sume that the optimal shift and rotation between source and
target session is obtained by maximizing the average correla-
tion over all possible shifts and rotations. A preliminary study
(see [16]) indicates that this is frequently the case.

Now for adaptation and testing of the EMG-based speech
recognizer, all target session data is transformed by interpola-
tion with the optimal shift and rotation, as determined by the
above algorithm.

4.3. The EMG-based Speech Recognizer

In this section we describe the building blocks of our recog-
nition system, namely feature extraction, training, (optional)
adaptation, and decoding.

Features for our recognition system are always computed
from bipolar EMG signals. When position shift compen-
sation is used, all unipolar target session data is first trans-
formed by interpolation as described above, then we compute
bipolar signals by applying a spatial filter.

Our feature set is taken from [2,15]: For any given feature
f , f̄ is its frame-based time-domain mean, Pf is its frame-
based power, and zf is its frame-based zero-crossing rate.
S(f , n) is the stacking of adjacent frames of feature f in the
size of 2n + 1 (−n to n) frames.

For an EMG signal with normalized mean x[n], the nine-
point double-averaged signal w[n] is defined as

w[n] =
1

9

4X
k=−4

v[n + k], where v[n] =
1

9

4X
k=−4

x[n + k].

The high-frequency signal is p[n] = x[n] − w[n], and the
rectified high-frequency signal is r[n] = |p[n]|. The final
feature TD5 is defined as follows:

TD5 = S(TD0, 5), where TD0 = [w̄, Pw, Pr, zp, r̄],

i.e. we use a total of 11 context frames. PCA+LDA is used
for dimensionality reduction [2], after PCA, 700 dimensions
are retained, which are further compressed by LDA to a 12-
dimensional feature vector. We note that this gives us better
results than the 32 dimensions which we used in [2].

The recognizer setup follows a standard pattern: We
use three-state left-to-right fully continuous Hidden-Markov-
Models, where the emission probabilities are modeled with
bundled phonetic features (BDPFs) [1]. The recognizer is
trained using the training data of the source session, yield-
ing a “background” myoelectric model which comprises all
information which we can obtain from the source session.
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Adaptation is performed by Maximum Likelihood Linear
Regression (MLLR) [17]. The 20 adaptation sentences of the
target session are used for estimating the MLLR transforma-
tion1, which modifies the myoelectric model to better match
the adaptation data.

For testing on the interpolated test data of the target ses-
sion, we use the (adapted) myoelectric model together with a
trigram Broadcast News language model. The decoding vo-
cabulary is restricted to the words appearing in the test set,
which results in a test vocabulary of 108 words incl. variants.
The test set perplexity is 24.24. For details see [2].

5. EXPERIMENTS AND RESULTS

We run the following five experiments:

• Direct application: We train a recognizer on the
source session and use it to decode the target ses-
sion, without any adaptation at all, i.e. neither MLLR
nor position shift compensation is used.

• Shift compensation: We interpolate the target session
data as described in sections 4.

• MLLR: We use MLLR to adapt the myoelectric model
from the source session towards the target session.

• MLLR + Shift compensation: We first interpolate the
target session data, then we apply MLLR to the source
myoelectric model, using the interpolated adaptation
sentences of the target session for MLLR estimation.

• Session dependent: For comparison, we train a session-
dependent system on the training data of the target ses-
sion. This is expected to yield the best results, however
it requires that 160 training sentences from the tar-
get session are available, which is not assumed for our
cross-session systems. In this case, MLLR and position
shift compensation are neither required nor useful.

Figure 2 depicts the results of these experiments on the
development corpus, broken down by speakers. Our measure
is the Word Error Rate (WER) on the test data sets of the
target sessions, which we intend to minimize. The WERs
are averaged over all 36 possible pairs of source and target
session.

First of all, we observe that direct application of a rec-
ognizer trained on the source session towards a different tar-
get session does not work at all: The average WER always
exceeds 90%. We also observe that MLLR adaptation, even
with the small amount of adaptation data, helps a great deal:
The average WER across sessions is reduced to 50.4%.

1It is remarkable that 20 sentences are already enough to obtain good
results here, indeed we reported in [3] that at least 30 sentences are required:
Side experiments show that this is due to the LDA dimensionality reduction.
If substantially more than 12 LDA components are retained, more adaptation
sentences are needed.
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Fig. 2. Breakdown of results by speaker for the development
corpus. Bars indicate standard deviation.

Our shift compensation algorithm substantially improves
this result, yielding a final average WER of the cross-session
system of 43.2%: An improvement over sole application of
MLLR of 14.3% relative. This result is consistent across
speakers. Using position shift compensation without an adap-
tation step also improves the WER of the cross-session sys-
tem, namely from the original 93.2 % to 81.7%. This is still
way above the WER obtained by MLLR alone, from which
we conclude that the discrepancy between sessions is not due
to the position shift alone. Session-dependent systems per-
form best, with an average WER of only 20.7%.

We evaluate our system on the held-back evaluation data
from speaker 4. The results are as follows:

Experiment Average WER
Direct application 92.69 %
Shift comp. without MLLR 82.19 %
MLLR 52.66 %
MLLR + Shift comp. 45.88 %
Session dependent 15.63 %

We see the same trend as on the development corpus
(figure 2). The average absolute improvement between the
MLLR and MLLR + Shift compensation setups is 6.8%, with
a 95% confidence interval width of 1.6%; proving statistical
validity of the improvement.

6. CONCLUSION AND FUTURE WORK

In this study we developed an algorithm to compensate for
variation of the EMG recording position for our EMG-based
speech recognizer. We showed that our algorithm signifi-
cantly improves the recognition accuracy over established
session adaptation, which underlines the advantages of using
arrays for EMG signal acquisition. We expect that these re-
sults can be further improved by training a recognizer on mul-
tiple sessions, as we already proved for our single-electrode
setup [3], paving the way towards robust and easy-to-use
EMG-based speech recognition in the field.
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