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ABSTRACT

Inferring brain connectivity networks has been increasingly
important for understanding brain functioning. It is suggested
that brain is inherently non-stationary and the dynamic pat-
terns of brain networks may provide deeper insights into brain
function. However, the majority of current models assume
that brain connectivity networks have time invariant struc-
tures, neglecting the variability in brain interactions over time.
To investigate time varying brain connectivity networks, a
stick time varying model is presented in this paper. Simula-
tion results demonstrate that the proposed method could im-
prove the accuracy in estimating time-dependent connectivity
patterns. It is also applied to real fMRI data set for studying
time-varying resting-state brain connectivity networks.

Index Terms— fMRI, time varying, brain connectivity
network, resting state

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a popular
non-invasive neuroimaging technology for studying brain ac-
tivities. Inferring brain connectivity networks using fMRI sig-
nals provides a promising way to study interactions between
distinct brain regions. A broad range of mathematical models
have been proposed to study the interactions between differ-
ent brain regions. However, most current methods assume the
time invariant connectivity structure that is not able to rep-
resent temporal variations of the underlying neuro-activities.
With the stationary assumption, the inferred brain connectiv-
ity possibly represents an averaged version of connectivity
patterns across time [1]. Recently emerging evidence sug-
gests that the dynamic brain connectivity patterns could pro-
vide great insights into brain activities [2].

To infer time-varying brain connectivity, several sliding
window based approaches have been reported, where brain
connectivity networks are assumed to change smoothly over
time. Within each selected sliding window, different network
modeling methods such as correlation [3, 4], covariance [5]

and Independent Component Analysis (ICA) [6] can be ap-
plied to learn the time-dependent connectivity patterns. An-
other category of methods can be referred as time-frequency
based models. For instance, coherence analysis and Granger
causality analysis based on wavelet transforms have been em-
ployed to study both resting state and task related fMRI sig-
nals [7, 8].

Several studies have demonstrated that functional net-
works inferred from stationary methods may indeed be driven
by a few critical BOLD time points [1, 9]. These critical time
points could be used as change points to segment the fMRI
samples into small segments. With the piece-wise station-
ary assumption, methods previously used to learn static brain
connectivity networks could be applied to data samples within
each segment [1, 10, 11].

The above three categories of methods, the sliding win-
dow based, time-frequency based and change point detec-
tion based multivariate approaches, all assume that multiple
brain regions have same temporal variations at the same
time scale. While different pairs of brain regions may ex-
hibit different time variability [2]. To discover dynamic
structures/coefficients over time, several time-varying dy-
namic Bayesian Network (DBN) approaches have been pro-
posed, although not in the area of brain connectivity modeling
[12, 13, 14].

Since it is not clear whether the observed dynamic
changes in brain interactions are due to the measuring noise,
randomized fluctuations or the underlying cognitive mod-
ulations, to reduce the influence of noise, it is reasonable
to assume that brain connectivity patterns would change
smoothly except at several abrupt changing points. In other
words, the temporally adjacent networks are likely to share
common edges than temporally distant networks as described
in the weighted regression model [12].

In this paper, we propose a stick time varying regression
model to estimate non-stationary brain interactions in a tem-
porally penalized weighted regression fashion. A difference
penalty is added into the weighted regression model to be able
to estimate smooth changing as well as abrupt changing con-
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nectivity patterns. More importantly, the proposed method
allows the multi-stability among multiple brain regions.

2. METHOD

Multivariate linear regression models have been widely used
to infer neural interactions. For instance, Structural Equa-
tion Modeling (SEM) estimates the brain interactions at zero
lag [15]. The autoregressive multivariate (MAR) model fo-
cuses on the lagged interactions between distinct brain ROIs
[16]. With the sparsity assumption, LASSO (Least Absolute
Shrinkage and Selection Operator) and group LASSO meth-
ods were also explored [17]. In the regression model used in
our paper, the fMRI time course of a Region of Interest (ROI)
is regarded as the response variable, and is predicted from the
time courses of other ROIs at zero-lag as,

Y = Xβ + e (1)

where vector Y with length T means the time course of one
brain ROI, X means the predictor matrix based on the time
courses of other ROIs, β is the coefficient vector and e means
the Gaussian noise vector. Due to the non-stationary nature
of brain activities, the time dependent regression model be-
comes,

Yt = Xtβ
t + e (2)

where t represents the time index and we need to estimate the
regression coefficients at each time point respectively. Based
on previous studies, connections between brain regions can
be considered as a sparse network [17]. One computationally
efficient approach to promote sparsity in the coefficient vec-
tor is to use an l1 penalty on the regression coefficients. In
order to estimate the time varying structures/coefficients, one
reasonable assumption about resting state brain connectivity
is that the underlying networks are changing smoothly over
time. Following [12], we can estimate the coefficients at each
time point separately in a time varying model (TV) as,

β̂t
∗
= argmin

βt∗

t=T∑
t=1

W t∗(t)
(
Yt −Xtβ

t∗
)2

+ λ
∥∥∥βt∗∥∥∥

l1
(3)

where W t∗(t) is the weight of observations from time t when
we estimate the coefficients at time t∗. In general, W t∗(t)
can be defined as any kernel function. In this paper, we use
W t∗(t) = exp(−(t−t∗)2/h)∑T

t=1 exp(−(t−t∗)2/h)
, which is a Gaussian Radial

Basis Function (RBF) kernel and h means the kernel band
width. λ is the parameter of sparse penalty which controls the
sparsity in the learned coefficient vector.

With the smooth changing assumption, temporally adja-
cent coefficients are more likely to be similar than tempo-
rally distant coefficients. However, in the weighted regres-
sion model as well as sliding window based models, the es-
timated brain connectivity structures/coefficients would still

suffer from random noise. In addition, the smooth chang-
ing assumption may not work well for piece-wise stationary
networks with abrupt changes. Therefore, we propose incor-
porating the difference penalty into our model and name it
the stick time varying (sTV) model. The difference penalty
used in the fused regression model serves for detecting change
points to segment piece-wise stationary data [13]. By intro-
ducing the difference penalty into the weighted regression
model, sTV model could estimate smooth changing as well
as abrupt changing connectivity patterns and thus is more
flexible compared with previous approaches for time-varying
brain connectivity modeling.

With the difference penalty, we have the model as,

minimize
βt∗ ,t∗∈RT

T∑
t∗=1

T∑
t=1

W t∗(t)
(
Yt −Xtβ

t∗
)2

+ λ

T∑
t∗=1

∥∥∥βt∗∥∥∥
l1

+ γ

T∑
t∗=2

∥∥∥βt∗ − βt∗−1∥∥∥
l1

(4)

where γ is parameter of difference penalty which is designed
to control the difference between adjacent coefficients. This
optimization problem can be solved by the coordinate descent
algorithm. We use the CVX optimization toolbox in this pa-
per [18].

The parameters of the stationary regression model are
usually determined by cross validation (CV) which sepa-
rates the data into training set and testing set. However, in
the time varying model, since each sample corresponds to
a certain time point, the structures and coefficients may be
different across time. The ordinary CV approach can not be
used directly in our time-varying case. To perform the cross
validation, we first perform up-sampling by a factor of two:
the odd samples represent the original data points and even
samples are the interpolated data points. For the purpose
of model selection, we assume that the corresponding even
samples have the same temporal properties as those of odd
samples. Treating the odd samples as the training set and even
samples as the testing set in simulation studies, we could use
CV to select the optimal parameters of the model in Eq. 4.

To make inference of brain connectivity networks, for
each ROI one by one, we treat the specific ROI as the re-
sponse vector and other ROIs as predictor matrix. In this
way, we could learn the sparse time-varying interactions
between distinct brain regions.

3. SIMULATION RESULTS

In order to compare the performances of the proposed method
(sTV) with the time varying model (TV) in [12] and the (sta-
tionary) sparse regression model, we performed simulations
in this section. The simulated data were generated from a
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Fig. 1: (a) An example of simulated time varying model. The color represents the coefficient strength. (b) F1 scores of the
proposed method, the time varying model in [12] and the LASSO model.

Gaussian model with certain changing structures and coeffi-
cients. More specifically, the data were generated as follows:

(1) We first generated 3 different anchor coefficient vec-
tors A1, A2, A3 with each corresponding to 20 variables
(P=20). The length of data samples corresponding to each
anchor coefficient vector was setted as T and the total length
was 3*T. To generate the time changing coefficient vectors βt

(t = 1, · · · , 3T ), we first setted β1 = A1, βT+1 = A2 and
β2T+1 = A3, and then interpolated a number of coefficient
vectors between them. An example of the time varying {βt}
is shown in Fig. 1 (a).

(2) The design matrix X was randomly generated, con-
taining 3T observations and P predictors. The error vector e
followed iid Gaussian noise ∼ N(0, 1). The response vector
Y was generated by Y t = Xtβt with t = 1, · · · , 3T .

We compared the proposed stick time varying model with
the time varying model in [12] and the static sparse regression
model (LASSO). The cross validation was used for parameter
selection in sTV and TV models as discussed before, and the
traditional 10 fold CV was used for the LASSO model.

In the simulation, we tested the performances of the algo-
rithms as a function of the number of time points T . For re-
liable assessment, each procedure was repeated one hundred
times and we compared the averaged performances of differ-
ent algorithms. F1 score was employed to quantitatively eval-
uate the general performance by considering both the Type I
and Type II error rates, as shown in Fig. 1 (b). We compared
F1 scores at sample size T = 15, 20, 30, 50 and 70 respec-
tively. Compared with other two methods, our simulation re-
sults demonstrated that the proposed stick time varying model
could yield higher accuracy in recovering time dependent co-
efficients. It could estimate smooth changing coefficients as
well as sudden change patterns and thus it allows to accurately

estimate the underlying time-varying brain connectivity pat-
terns.

4. REAL APPLICATION AND DISCUSSION

In this section, we apply the proposed method to a real fMRI
study. Twelve Parkinson’s Disease (PD) subjects and ten
healthy control subjects were recruited from Pacific Parkin-
son’s Research Center (PPRC) at the University of British
Columbia (UBC). All the experiments were approved by the
Ethics Board at UBC. A 3 Tesla scanner (Philips Gyroscan
Intera 3.0T; Philips Medical Systems, Netherlands) equipped
with a head-coil was used to collect data in the resting state.
fMRI was sampled at 0.5 Hz. 4 mins signals were used in the
time varying analysis and 48 Freesurfer-derived ROIs (listed
in Table 1) were chosen in this study.

For each subject, the penalty λ and γ were fixed as 0.4.
Though studies have been conducted on the time variations
in the connectivity networks, it’s still not clear the time scale
of the brain activities. In this resting state study, we want
to compare the relative difference modulated by the disease
state. The bandwidth was chose as 32s (16 points), which is
sufficiently long to remove noise and also can capture enough
variability in temporal patterns.

For the temporal connectivity patterns, we found 21 com-
mon connections (defined as appearing at least at one time
point) that appear in all subjects in the normal group (Fig. 2
(a)) and 12 common connections in the PD group (Fig. 2 (b)).
The results demonstrated that more stable connections were
identified in the normal subjects. Similar observations were
noted when selecting other parameters in our study. More
specifically, some bilateral ROIs were involved in the sta-
ble connections. For instance, Left and Right ACC (L6/R6),
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Table 1: The index and names of 48 brain ROIs. ’L’ represents the brain left side and ’R’ represents the brain right side.

Index Name Index Name Index Name
L1/R1 L/R Cerebellum L9/R9 L/R PFC L17/R17 L/R ctx-inferiortemporal
L2/R2 L/R PMd L10/R10 L/R Pallidum L18/R18 L/R ctx-lateraloccipital
L3/R3 L/R PMv L11/R11 L/R Putamen L19/R19 L/R ctx-middletemporal
L4/R4 L/R Pre-SMA L12/R12 L/R Somatosensory L20/R20 L/R ctx-precentral
L5/R5 L/R SMA-proper L13/R13 L/R Thalamus-Proper L21/R21 L/R ctx-precuneus
L6/R6 L/R ACC L14/R14 L/R ctx-caudalmiddlefrontal L22/R22 L/R ctx-superiorparietal
L7/R7 L/R Caudate L15/R15 L/R ctx-cuneus L23/R23 L/R ctx-superiortemporal
L8/R8 L/R Cerebellum-Cortex L16/R16 L/R ctx-inferiorparietal L24/R24 L/R ctx-supramarginal

(a) (b)

Fig. 2: (a) Common connections detected in the normal control group. (b) Common connections detected in the PD group.
The common connections are defined as those connections appearing at least at one time point in all the subjects in the group.
The label of the connection represents the averaged duration (time points) of the connection.

Left and Right Caudate (L7/R7) and Left and Right Pallidum
(L10/R10) were found in the normal group. Left and Right
ACC (L6/R6), Left and Right ctx-cuneus (L15/R15) and Left
and Right ctx-superiorparietal (L22/R22) were found in the
PD group. The bilateral ROIs were found to be more stable
in the time varying connectivity networks which is consistent
with previous studies [2].

Due to the space limit of this paper, we could not fully
elaborate the choice of the parameters and the interpretation
of the time varying connectivity results. We would discuss
them in detail in our future extended paper.

Studying dynamic properties of brain connectivity pat-
terns is important for understanding brain function. In this
paper, a penalized weighted regression time varying model is
proposed. It could estimate smooth changes as well as abrupt
changing patterns in connectivity networks. Compared with
previous multivariate time varying approaches introduced for
fMRI brain connectivity modeling, the sTV can model the

ROIs multi-stability and thus is more flexible in real appli-
cations. It is worth noting that the parameters such as band-
width themselves are of great interest. It could provide great
insights into the time scale of brain activities. Another con-
cern in time varying resting state brain connectivity analysis
is how to interpret the learned time dependent connectivity
patterns. The large inter-subject variability among different
subjects makes the interpretation more difficult when com-
pared with the task-related fMRI brain connectivity patterns.
The disease related changes of the underlying time-varying
patterns in brain connectivity might be potential biomarkers
and deserve further investigation in the future studies.
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