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ABSTRACT
Independent component analysis (ICA) has proven quite use-
ful for the analysis of functional magnetic resonance imaging
(fMRI) data. However, stability of ICA decompositions is an
issue in ICA of fMRI analysis primarily due to the noisy na-
ture of fMRI data and the iterative nature of algorithms. In
this work, we present an approach that utilizes an objective
criterion and that is particularly suitable for image analysis to
select the best of multiple ICA runs to use for further anal-
ysis and inference. In addition, a growing number of stud-
ies are focusing on the decomposition of single subject data
and/or using high ICA model order, which both require an ef-
fective way to align components obtained from different ICA
runs. In this paper, while presenting a method that provides
superior performance in selecting the best run and interpret-
ing the statistical reliability of ICA estimates, we also address
the component sorting issue. Both simulated and real fMRI
results show that our method selects more useful ICA runs
than those selected by the widely used ICASSO software and
that it is a more objective and better motivated approach to
evaluate results and hence a promising tool for ICA analysis
of fMRI data.

Index Terms— Independent Component Analysis, EBM,
SimTB, assignment problem, ICASSO, fMRI

1. INTRODUCTION
Independent component analysis (ICA), as a data-driven
method, has proven very useful for analysis of functional
magnetic resonance imaging (fMRI) data [1,2]. Several types
of ICA algorithms have been developed and successfully ap-
plied to fMRI analysis. Most of these algorithms are iterative
in nature and thus one important issue is the stability of the
decomposition achieved using ICA. The estimation of spatial
maps for two ICA runs with identical input data might be
different due to local minima produced by the noisy nature
of fMRI data and the iterative nature of ICA algorithms [3].
This unknown estimation reliability is induced by the finite
sample size of data and the non-unique ICA solution derived
from the locally optimal point of the cost function. One ap-
proach to address this issue is to determine an objective way
to assess and select the best run to use for further analysis and
inference.

∗This work was supported by the National Science Foundation grant
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A widely used approach for resolving the problem is to
make use of ICASSO [4], an explorative visualization method
for investigating the relations between estimates. ICASSO
runs an ICA algorithm several times and clusters estimated
components from all runs based on the absolute value of the
correlation between estimates, and then selects the centrotype
of each cluster as the best estimate. ICASSO is incorporated
in the widely used group ICA of fMRI toolbox (GIFT) soft-
ware that implements both single subject and group ICA anal-
ysis for fMRI data [5]. However, the direct use of centrotypes
can lead to loss of information, since more than one type of
component may be grouped into the same cluster, but only
one type of component can be selected as the centrotype, es-
pecially when the ICA model order is high. To address this
issue, [6] proposed a method based on ICASSO to select the
most stable run instead of centrotypes from multiple runs.
However, ICASSO can result in different runs selected for
different components, which breaks the connection with the
ICA mixing model. In addition, both approaches require sub-
jective thresholds to define a reliable cluster or run. As more
studies nowadays are using high ICA model order, for exam-
ple, 50 to 70 or higher, and a growing number of studies are
focusing on the study of a single subject, which require an ef-
fective way to align components obtained from different ICA
runs, new solutions to the run selection problem are needed.

In this work, we propose a novel approach to investigate
the stability of ICA algorithms. Our method not only ad-
dresses the component sorting issue but we provide evidence
to show it provides superior performance in selecting the
best run and interpreting the statistical reliability of estimated
components. In Section 2, we give an introduction of the
ICA algorithm and present the approach that uses assign-
ment problem and minimum spanning tree (MST) to solve
the component sorting issue. We propose our approach of
selecting the best ICA run in this section. Then, we introduce
the generation of multi-subject fMRI-like datasets using a re-
cently developed simulation toolbox [7], real fMRI data, and
several approaches to evaluate the efficiency of the proposed
method in Section 3. Next, we present experimental results in
Section 4 and then present the conclusions in the last section.

2. METHODS AND MATERIALS

2.1. Independent component analysis of fMRI
In the ICA analysis of fMRI data, we start from the ICA
model as X = AS, where S = [s1, . . . , sN]T is an N-by-V
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Fig. 1: Illustration of the proposed method.

Fig. 2: SimTB configuration of original sources, labeled by differ-
ent colors. These spatial maps are designed to represent components
observed in axial slices of real fMRI data.

source matrix, N is the number of sources, V is the number
of voxels and si is the ith underlying component. The mixing
matrix A is an M-by-N matrix where each column ai repre-
sents the time course for the ith source. The goal of the ICA
algorithm is to determine a demixing matrix W such that the
sources are estimated using Ŝ = WX under the assumption of
statistical independence of spatial components.

Entropy bound minimization (EBM) algorithm is one of
the most effective ICA algorithms, which minimizes the en-
tropy bound of estimated sources and uses a line search pro-
cedure for better convergence behavior. EBM can estimate
the sources that come from a wide range of distributions in-
cluding sub- or super- Gaussian and it has proven useful for
the analysis of fMRI data [8, 9].

The group ICA analysis approach [5] reshapes 4D fMRI
data such that the spatial dimension is treated as a single di-
mension and images from individual subjects are concate-
nated in time. Then principal component analysis is applied
on both subject and group levels to reduce data dimension.
An ICA decomposition is performed on the final matrix and
individual subject maps are back-reconstructed after this step.

2.2. Generalized assignment problem
Since ICA algorithms suffer a permutation ambiguity and real
data never exactly follow the ICA model, some components
are not estimated consistently and slightly different compo-
nents may be estimated during different runs. Thus, our goal
is to find the best solution of sorting or ordering the estimated
components for multiple runs.

This problem arises in a number of scenarios, most typ-
ically when frequency domain ICA is used. Various meth-
ods have been developed, including imposing constrains
on demixing filters [10], correlations between envelopes of
band-passed signals [11], clustering estimated frequency re-
sponses [12,13]. These methods suffer when the model order
and/or data dimension are high, which are not suitable for
spatial ICA. Hence, in our work, we consider this problem as
a generalized assignment problem.
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Fig. 3: Simulation results for the proposed method and ICASSO.
The value in y-axis is the average of 100 data sets. Our method al-
ways has better performance than ICASSO for different CNR levels
and/or higher ICA model order (> 8).

In a linear assignment problem (LAP) [14], given an equal
number of agents and tasks, we have to assign each agent
to exactly one task in such a manner that the overall cost of
assignment is minimized. The optimal solution of LAP can be
found by using the Hungarian algorithm [15]. It is equivalent
to sorting components in the same order through best pairing
them for two ICA runs. We generalize this method for an
ordering from two sets to multiple sets of components, which
becomes a generalized assignment problem.

We estimate N independent components (ICs) from each
ICA run. Then, an N-by-N matrix Cmn is calculated as the
input cost of LAP for sorting the mth and nth runs, where
ci j = 1 − d(sm

i , s
n
j ) is the i jth entry of Cmn, sm

i and sn
j are

ICs from the mth and nth runs, i, j ∈ [1,N],m, n ∈ [1,K]
and d is the correlation coefficient. The minimum cost and
corresponding assignment for each pair of ICA runs are ob-
tained by applying Hungarian algorithm. We then generate a
connected, undirected graph that includes K nodes (runs) and
weighted edges having the minimum costs of LAP for each
pair of ICA runs as weights. Next, an MST is calculated by
finding a minimum-cost subgraph connecting all nodes [16].
Finally, we reorder components in each run according to the
central run in the obtained tree. The central run has the most
connections with other runs and the minimum cost to the con-
nected runs if there exists several runs having the same num-
ber of neighbors.

2.3. Best run selection based on statistical significance
After aligning ICs from all runs, we perform one-sample T -
tests for each component estimate across K runs to investigate
the reliability of the estimates of the ICA algorithms. Total of
N T -maps are obtained, which represent components across
multiple ICA runs. The best run is selected as the run with
the highest correlation between estimated components and the
corresponding T -maps. In addition, when the estimation is
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Fig. 4: Interpretation of ten runs using MST. The 4th run is selected
as the reference to align components from other runs. Weights on
edges are the minimum cost when aligning components of two runs.

consistent, the obtained T -maps exhibit a clear delineation of
the functional area of interest whereas when the estimation
is not consistent, that is not the case. Thus, the consistently
estimated components are favored when selecting the best run
using T -maps. The procedure is shown in Figure 1.

For a given component, the average correlation, which is
between the T -map and the same components from all runs,
also represents the consistency of this component estimated
by an ICA algorithm. For one run, the average correlation,
which is between T -maps and the corresponding estimated
components from this run, denotes the reliability of this ICA
run based on statistical significance. We select the run having
the highest reliability as the best run to perform subsequent
analysis in fMRI study.

3. EXPERIMENTAL DESIGN
To evaluate the efficiency of the proposed approach and com-
pare its performance with ICASSO, we perform these meth-
ods on both simulated and real fMRI data. Group ICA is used
to decompose the data for all subjects using GIFT [17]. In the
subject dimension reduction step, the dimension of the data
is first reduced to 40, and then the reduced data from each
subject are concatenated in the temporal dimension. A group
dimension reduction step is performed to reduce the dimen-
sion to a selected order. We then perform EBM 10 times with
bootstrapped data and use different initial conditions at each
run on this final set. The processing at this stage is maintained
the same for all methods. After applying group ICA analysis
to each data set, the proposed approach and ICASSO are per-
formed to analyze the results and select the best run from ten
runs.

3.1. Simulation of fMRI-like data
Multi-subject fMRI-like data are generated using the simula-
tion toolbox, SimTB [7]. This toolbox controls the genera-
tion of 2D spatial components and time courses by a selected
number of parameters following the linear mixing model.

We select 27 original sources as shown in Figure 2. These
spatial maps are modeled after components commonly seen
in axial slices of real fMRI data and each contains 148 × 148
voxels. Component time courses are simulated as the con-
volution of the auditory oddball (AOD) task event—which is
explained in Section 3.2—with a canonical hemodynamic re-
sponse function and scaled to have a peak-to-peak range of
one. Each time course is 150 time points in length and the
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Fig. 5: Reliability of components in descending order. More reli-
able estimates correspond to higher maximum T -values in their T -
maps. The first five stable components in our method include tempo-
ral, motor and motor-temporal components, corresponding to AOD
task, which is not observed using ICASSO.
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Fig. 6: The left figure represents the relationship among ten runs.
The 10th run is selected using our method. The right figure is
ICASSO results showing correlation of components from all runs.
More than one type of components are grouped into the same clus-
ter.

repetition time is 2 seconds per sample. Total of 30 sub-
jects are generated in each simulation data set. The slices
of individual components across all subjects can be rotated,
translated, contracted or expanded based on the distributions
of relevant parameters. To emphasize the difference among
multiple ICA runs in a reasonable range, we set the simula-
tion parameters as similar to those in [18], which specifies the
parameter of translation N(0, 2), rotation N(0, 3), and spread
U(0.3, 3), whereN andU denote uniform and Gaussian dis-
tributions. In addition, Gaussian noise with a variance corre-
sponding to a standard contrast-to-noise ratio (CNR) is added
to each component.

We first evaluate the performance of our proposed method
for CNR values from 0.1 to 2.5 with increments of 0.2. For
a given CNR, we generate 100 multi-subject data sets, where
each includes 20 components randomly selected from 27 orig-
inal sources. Second, to investigate the effect of ICA model
orders, we fix the value of CNR to 1 and change ICA model
orders from 2 to 27 with the increment of 3 in each data set.
Components are randomly selected from the original sources
and 100 data sets are generated for each given order.

3.2. Real fMRI data
The real fMRI data used in this experiment are from 28
healthy controls and 28 schizophrenia patients, all of whom
provided written, informed, IRB approved consent at the
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Hartford Hospital. All participants were scanned twice while
performing an AOD task. Therefore, each participant has
two sessions of data. The subjects were stimulated with
three kinds of sounds: target (1000 Hz with a probability of
0.10), novel (nonrepeating random digital noises with a prob-
ability of 0.10), and standard (500Hz with a probability of
0.80). Preprocessing, including realignment, normalization
and smoothing, was performed by SPM5 [19]. More details
about the AOD paradigm and other parameters are described
in [20, 21]. In the group analysis of real fMRI data, we es-
timate 50 components to test stability first at a higher order
since the component identification becomes challenging.

4. EXPERIMENTAL RESULTS
4.1. Simulation results
A set of mean components is calculated across true sources
of 30 subjects for each generated data set. The ground truth
allows us to evaluate results explicitly. First, we calculate the
mutual information between the ground truth and estimated
aggregated components for each run. Next, ten runs are sorted
in descending order according to the average mutual informa-
tion of one run. Then we assign an integer score from 10 to 1
for each run to quantify the estimation of these 10 runs. The
larger score value indicates a better ICA run having larger
mutual information with the ground truth.

Results are shown in Figure 3. The score in y-axis is the
average of 100 data sets. Our method always has better per-
formance than ICASSO for different CNR levels. Figure 3(b)
shows that our method selects better runs than ICASSO when
the number of estimated components is greater than eight.
Since ICASSO uses components from all runs to perform
clustering, smaller number of components yields a better per-
formance. We also calculate the mutual information between
the truth sources and selected centrotypes of original ICASSO
and compare the results with both best run selection methods.
Figure 3(c) shows that our method always leads to higher mu-
tual information with true sources than both ICASSO meth-
ods while changing CNR from 0.5 to 2.5. We remove the
results where CNR is smaller than 0.5, since estimates of
three methods all have very low mutual information with true
sources due to the low CNR. Figure 3(d) shows the average
mutual information is decreasing while increasing the num-
ber of estimated components. Our method has the best per-
formance when the order is large and similar results with
ICASSO when the order is small in terms of mutual infor-
mation.
4.2. Real fMRI data results
An MST is generated to demonstrate the relationship between
ten runs, as shown in Figure 4. The proposed approach se-
lects the 4th run as the reference to align components of other
runs. Then total of 50 T -maps are generated across 10 runs.
If an estimated independent component is stable, the ICA al-
gorithm should produce very similar results. Thus, more reli-
able components correspond to higher maximum T -values in
their T -maps. Figure 5 presents the reliability of components
in descending order. Since experimental data are AOD task
data, results show that the most significantly reliable compo-
nents are task-related components including temporal, motor

Our Method ICASSO
BestRun

ICASSO
CentroType

Fronto
Insula

Frontal

Fig. 7: Comparison of two components selected by our method
and both ICASSO methods. Components of interest have highest
Z-values and/or larger activated regions in our method than the best
run selected using ICASSO.
and motor-temporal components. The default mode network
(DMN) is also constantly estimated. Most of the unreliable
components tend to be artifacts that might be expected since
they likely exhibit greater variability among subjects. In-
stead of mixing components from all runs in ICASSO, which
groups more than one type of component into the same clus-
ter, we calculate the correlation between estimated compo-
nents and T -maps for each run. As shown in Figure 6, our
method (left) shows correlation values in each run on one box.
The central mark is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are
plotted individually.

The 10th run is selected as the best in our method and
the 2nd run is the best using ICASSO. In Figure 7, we com-
pare two components selected using our method, best run of
ICASSO and centrotype of ICASSO. Components of interest
have highest Z-values and/or larger activated regions in our
method than the best run selected using ICASSO. Other com-
ponents that are not included in this paper due to the page lim-
itation also have the same trend, such as frontoparietal, motor,
visual component and so on. We also apply our method when
estimating different model orders, including 20, 30 and 40.
Results show similar conclusions with an order of 50.

5. CONTRIBUTIONS AND CONCLUSIONS
In this paper, we propose a novel method for selecting the
best ICA run out of multiple runs and show that the proposed
method not only selects the best run as indicated by higher
Z-value and larger activated regions in ICs, but it is also ef-
fective in interpreting estimated results, which is especially
important for fMRI data analysis. We compared the perfor-
mance of our method and ICASSO in terms of mutual in-
formation and best run scores by applying on multi-subject
fMRI-like datasets with increasing CNR and ICA model or-
der. Using assignment algorithm and MST, we addressed the
sorting problem of different ICA runs. We also performed
our method on real fMRI data and analyzed the results in sev-
eral ways. Our experimental results show that the proposed
method appears to select better ICA runs than ICASSO and
provides a more objective and better motivated approach to
evaluate results. Given this, it is a promising approach for the
ICA analysis of fMRI data.
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