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ABSTRACT

State-of-the-art convolutional neural networks (CNNs) typically use
a log-mel spectral representation of the speech signal. However,
this representation is limited by the spectro-temporal resolution af-
forded by log-mel filter-banks. A novel technique known as Deep
Scattering Spectrum (DSS) addresses this limitation and preserves
higher resolution information, while ensuring time warp stability,
through the cascaded application of the wavelet-modulus operator.
The first order scatter is equivalent to log-mel features and standard
CNN modeling techniques can directly be used with these features.
However the higher order scatter, which preserves the higher reso-
lution information, presents new challenges in modelling. This pa-
per explores how to effectively use DSS features with CNN acoustic
models. Specifically, we identify the effective normalization, neural
network topology and regularization techniques to effectively model
higher order scatter. The use of these higher order scatter features,
in conjunction with CNNs, results in relative improvement of 7%
compared to log-mel features on TIMIT, providing a phonetic error
rate (PER) of 17.4%, one of the lowest reported PERs to date on this
task.

Index Terms— deep scattering spectrum, neural networks

1. INTRODUCTION

Learning representations optimal for a given classification task, in
conjunction with the classifier is an attractive proposition, as all in-
termediate processing stages from the raw signal up to the classifi-
cation are learned to minimize the task specific objective function
[1]. However representation learning from the raw speech signal,
while making minimal assumptions, has proven to be challenging in
acoustic modeling. For example, Palaz et al [2] showed that learning
filters from a raw-signal jointly within a neural network framework
was slightly worse than feeding log-mel spectra as input into the
network. Since using lower-level representations of the signal can
be challenging, to date state-of-art acoustic modeling techniques use
a higher level representation of speech signal, like log-mel spectra.

Design of these higher level feature representations is done to
satisfy the goals of preserving detail in the signal, necessary for clas-
sification, while remaining invariant/stable to non-informative dis-
tortions. A key step for representing speech in a stable fashion is to
focus on elements of the signal that are important for speech recog-
nition. This helps reduce the variance in the representation, due to
non-informative elements and channel distortions [3]. Conventional
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feature extraction techniques like MFCC [4], PLP [5] and RASTA
[6] operate on this principle. However, these features are often de-
signed with an invariance in mind, and without explicit knowledge
of the classifier objective. This might remove potentially important
information.

For example, the sub-10ms temporal dynamics of speech, es-
sential to capture transient phenomena and finer modulation struc-
ture of the speech sounds, are not captured by the log-mel spec-
tra [7]. Even though better estimation techniques can be designed
to preserve higher resolution detail [8], (e.g. using auto-regressive
modeling techniques), even these high resolution representations are
processed using short term smoothing operators for deformation sta-
bility [9]. In short, designing a representation to both, preserve the
relevant detail in the speech signal and provide stability/invariance
to distortions, is a non-trivial task.

To over come these limitations there has been recent effort
in learning invariance transforms from lower level representations,
while improving over the performance of the higher level represen-
tations. For example, [1] looked at starting with a raw acoustic rep-
resentation of the signal (i.e., power spectrum), and learning the fil-
ter banks in a neural network framework. However, even this work
used the power-spectra as an input representation, which is com-
puted from a fixed window-length, which thus also removes infor-
mation from the signal.

Deep scattering networks (DSN)[10] have recently been intro-
duced to address some of the above challenges. DSNs take a raw-
signal and generate a contractive representation, which preserves
signal energy, while ensuring Lipschitz continuity to deformations
( [11]and [12]). A scattering representation includes log-mel like
measurements (first-order scatter) together with higher-order co-
occurence coefficients that can preserve greater detail in the speech
signal [13]. Second order scatter coefficients, for example, preserve
the higher resolution information in the signal, such as transient phe-
nomena or amplitude modulations. The representation generated by
these networks, called Deep Scattering Spectrum (DSS), is locally
translation invariant representation and stable to time varying defor-
mations [13]. Thus, a benefit of the DSS is that it allows us to start
from the raw-signal and provides a set of wavelet-modulus trans-
forms which try to minimize loss of information in the input signal.
This is very different than conventional speech representations such
as log-mel.

In this paper, we explore using DSS features for acoustic model-
ing. As deep neural networks (DNNs) are now considered state-of-
the-art in acoustic modeling [14], we explore how to use DSS fea-
tures in an effective manner with DNNs, which to date has not been
done. Within this, we discuss the challenges in DNN-based acoustic
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modeling using the DSS. This includes exploring how to effectively
combine first-order scatter and higher scatter coefficients, how the
features should be normalized within the DNN without losing infor-
mation, and how the network should be regularized to handle these
features.

For the purposes of this paper, we create DSS features ahead of
time, and then feed this into a DNN. However, the DSS coefficients
are computed by cascading wavelet filter banks and followed by a
modulus non-linearity, which can be interpreted as a convolutional
neural network. Thus learning the DSN and DNN parameters jointly
from the raw signal is an obvious next step.

The rest of this paper is organized as follows. Section 2 de-
scribes the DSS computation process. It introduces normalization
technique called scattering transfer, which is used in conjunction
with this representation. Section 3 presents pre-processing tech-
niques for higher order scatter coefficients, network architecture for
combining first-order and higher-order scatter using DNNs. Sec-
tions 4 and 5 describes the multi-resolution filter-bank approach for
extracting higher order scatter at various resolutions which helps in
achieving state-of-art TIMIT phoneme recognition results. Finally,
Section 6 concludes the paper and discusses future work.

2. SCATTERING TRANSFORM

In this section we briefly describe the Deep Scattering Spectrum
(DSS) representation for speech signals, introduced in [13]. Joakim
et al [13] have shown that the mel-frequency spectrogram (or log-
mel) coefficients, computed as frequency average of the linear fre-
quency spectrogram using mel-windows, can be approximated by
the time average of the demodulated sub-band signals, extracted us-
ing a wavelet filter-bank (ψλ1 ). The operations of demodulation,
accomplished using a modulus(|.|), and time averaging, performed
by low-pass filtering (φ(t)), emulate an amplitude demodulator. To
generate the logmel representation, time support of this averaging fil-
ter φ(t) is chosen to be∼ 25 ms and ψλ1 is chosen to be a constant-
Q filter-bank with Q=8.

Time averaging provides features which are locally invariant to
small translations and are stable to distortions. However this averag-
ing operation leads to loss of information of interest, which in speech
signals corresponds to the transient phenomena or finer amplitude
modulations. To recover this lost information another decomposition
of the sub-band signals is performed using a second wavelet filter-
bank(ψλ2 ). This second decomposition captures the information in
the sub-band signal, |x ∗ ψλ1 |, left out by the averaging filter φ(t).
The decomposed sub-band signals |x ∗ ψλ1 | ∗ ψλ2 , are once again
passed through the amplitude demodulator (||x ∗ψλ1 | ∗ψλ2 | ∗φ(t))
to extract stable features. The information left out by this second
averaging operation can be once again be isolated using a third de-
composition and so on.

Thus using a cascade of these decomposition and modulus op-
erations, referred to as the wavelet-modulus operator, the higher res-
olution detail in the signal can be preserved, to the extent desired
for any speech task. It is important to note that though this high
resolution information is preserved, the representation is still locally
deformation stable, to the extent determined by the averaging filter
φ(t).

For speech signals the first order scatter (|x ∗ ψλ1 | ∗ φ(t)), rep-
resented as S1x(t, λ1), is the logmel equivalent and second order
scatter (||x ∗ ψλ1 | ∗ ψλ2 | ∗ φ(t)), represented as S2x(t, λ1, λ2), is
the amplitude modulation spectrogram equivalent. The second order
scatter is computed using a constant-Q filter-bank withQ = 1. Each
of the decompositions ||x∗ψλ1 |∗ψλ2 |∗φ(t), has limited number of

non-zero coefficients, due to the band-limited nature of the signals
|x ∗ ψλ1 |.

To ensure that the higher order scatter just depend on the ampli-
tude modulation component of the speech signal, [13] suggested the
use of the “scatter transfer” operator, which is effectively the nor-
malization of the higher order scatter by the lower order scatter. The
scatter transfer operation, defined by Equation 1, is applied to the
higher order scatter.

T (t, λ1, λ2) =
S2x(t, λ1, λ2)

S1x(t, λ1)
(1)

For the sake of brevity, in this paper we represent the first order
scatter S1x(t, λ1) with S1 and the normalized second order scatter,
given in Equation 1, with S2.

3. MODELING DEEP SCATTER SPECTRUM

In this section, we present a detailed analysis and optimal recipe for
modeling scatter coefficients using neural networks. These are bro-
ken down into the broad categories of feature representation, nor-
malization, network architecture and non-linearity.

3.1. Experiment Design

All results presented in this section are evaluations on the TIMIT
phoneme recognition task [15]. The baseline speaker-independent
CNN system is trained with 40 dimensional log mel-filter bank co-
efficients including their ∆ and ∆∆ coefficients. The architecture
of the CNN is similar to [16], which was found to be optimal for
speech tasks. Specifically, the CNN has 2 full weight sharing con-
volutional layers with 256 hidden units, and 3 fully connected layers
with 1,024 hidden units per layer. Our experiments explore using a
context-independent tree of 147 output targets, as well as a context-
dependent tree of 2400 output targets [17].

3.2. Normalization

Feature normalization is critical in neural network training to achieve
good convergence in training. As discussed in [18], when features
are not centered around zero, network updates will be biased towards
a particular direction and this will slow down learning. The paper
even discusses an extreme case when all inputs into a layer are pos-
itive. This causes all weights to increase or decrease together for a
given input, and thus the weight vector can only change direction by
zigzagging which is extremely slow.

In our paper, we perform a straightforward mean and variance
normalization of S1 features, similar to log-mel features. However,
[13] performed a “scatter transfer” operation, shown in Equation 1,
which was found to be effective for S2. We use this normalization
scheme for higher-order scatter and apply a mean-only normaliza-
tion on top of this, as preliminary experiments showed that applying
variance normalization after scatter transfer operation was not opti-
mal.

3.3. Feature Representation

The first order scatter coefficients (S1) are similar to the log-mel
coefficients. Hence the standard ∆ and ∆∆ features were com-
puted for this feature stream. To verify the equivalence of S1 and
log-mel features, we trained a CNN with both feature sets. Table 1
shows that the phonetic error rate (PER) for both feature sets using
context-independent (CI) and context-dependent (CD) state targets,
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is roughly equivalent, with small differences likely due to the ran-
domness of training batches [18] during CNN training. Note that
rectified linear units (ReLUs) [19] are used for these experiments.

Feature PER
CI CD

logmel + ∆ + ∆∆ 19.3 18.7
S1x(t, λ1) + ∆ + ∆∆ 19.0 18.7

Table 1. Comparison of S1x(t, λ1) and logmel

∆ and ∆∆ coefficients were not computed for the higher or-
der scatter features S2. On inspection, it was noted that the scatter
transfer operation, described above in Equation 1, also enhances the
transitions in the higher order scatter coefficient trajectories, which
is similar to the functionality of the ∆ features. The application of
the ∆ filter on top of S2 increases the variance in the representation,
and was not found to be beneficial.

3.4. Network Architecture

CNNs reduce spectral variations and model spectral correlations
which exist in speech signals and provide substantial gains in acous-
tic modeling compared to DNNs on both small and large vocabulary
tasks ([16],[20]). The conventional spectro-temporal representation
S1 (or log-mel) preserves locality in both time and frequency, and it
can be directly used as an input to the CNN, along with the ∆ and
∆∆ channels.

The second order scatter, S2x(t, λ1, λ2), which is the decompo-
sition of amplitude modulations in each sub-band of the first-order
filter-bank (|x ∗ ψλ1 |), preserves the locality of information, for a
given sub-band λ1. Thus it can be used as the input to a CNN. How-
ever each of these sub-band decompositions has limited number of
non-zero coefficients (see Section 2). As a result the filter size in the
CNN, that can be meaningfully chosen, is small. Thus, a DNN was
chosen to process the higher order scatter.

Therefore, the first order scatter is processed using convolutional
layer(s), while the second (or higher) order scatter is processed using
fully connected layer(s). Hence a CNN/DNN combination network
was used to process these features, which has been explored before
for combining multiple feature streams [21, 22]. The architecture of
this network is shown in Figure 1. With this architecture, we initially
explore using 1,024 hidden units for the first DNN layer, similar to
all other fully connected DNN layers.

Table 2 compares the performance of first and second-order
scatter features using DNNs and the joint CNN/DNN architecture.
For these experiments, the sigmoid non-linearity was used instead
of ReLU. The joint architecture offers improvements over just the
DNN, and so we adopt this architecture for subsequent experiments.
It should be noted that the PER increases for the DNNs when go-
ing from S1 to S2, and one possible explanation is that these feature
streams use different normalization schemes so their dynamic ranges
are different.

Feature DNN CNN (for S1)+DNN (for S2)
S1 + ∆ + ∆∆ 23.9 21.3
S1 + ∆ + ∆∆ + S2 24.2 20.9

Table 2. Comparison of DNN and CNN-DNN architecture on CI
phoneme recognition

S1x(t,λ1) +Δ+ΔΔ  S2x(t,λ1λ2)  

Convolutional layer 
+ Pooling

Fully Connected Layer

Fully Connected Layer

Posterior  

Fully Connected Layer

Fully Connected Layer

Softmax Layer

Convolutional layer 
+ Pooling

Fig. 1. CNN/DNN architecture

3.5. Non-linearity

Rectified linear units (ReLUs), f(u) = max(0, u), have been
shown to be suitable non-linearity for learning in DNNs due to prop-
erties of better generalization, faster convergence, easier optimiza-
tion and faster computation [19]. They are particularly useful if
the input features are not normalized to unit-variance, as ReLUs
are unbounded along the positive axis. Since the higher-order scat-
ter features used the “scatter transfer” normalization, we explore if
ReLUs are beneficial for these features. Because ReLUs are not
bounded, we also explore using additional regularization schemes
such as maxnorm ([23]) and dropout ([24]). Table 3 indicates that
the PER improves for both first and second order scattering features
by using ReLUs, with additional improvements coming from includ-
ing regularization.

Non-linearity S1 + ∆ + ∆∆ S1 + ∆ + ∆∆ + S2

Sigmoid 21.3 20.9
ReLU 20.0 20.3
ReLU+regularization 19.0 18.8

Table 3. Comparison of Non-linearities on CI phoneme recognition

4. MULTI-RESOLUTION SCATTERING FEATURES

Multi-stream processing of speech at various spectral and tempo-
ral resolutions derives its inspiration from neurophysiological ev-
idence of parallel processing streams ([25],[26]). These parallel
streams capture spectral and temporal dynamics of the signal at vari-
ous resolutions. Furthermore, in [13], it was shown that using multi-
resolution scattering features improved performance over just a sin-
gle resolution on the TIMIT classification task.
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The scattering representation was used to separate the tempo-
ral dynamic information among scatter features of various orders.
To capture spectral dynamics at various resolutions filter-banks with
different spectral resolutions (Q=13,Q=4,Q=1) denoted by ψλa ,ψλb

and ψλc were used to compute the first decomposition in the scat-
ter representation. The second decomposition in the cascade was
performed with a single filter-bank (Q=1),ψλd . This decomposi-
tion results in 6 different feature streams S1x(t, λa), S1x(t, λb),
S1x(t, λc), S2x(t, λa, λd), S2x(t, λb, λd) and S2x(t, λc, λd).

The three first order scatter feature streams {S1x(t, λa),
S1x(t, λb), S1x(t, λc)}, represented by G1, along with ∆ and
∆∆, were processed through three different convolutional lay-
ers. The second order scatter {S2x(t, λa, λd), S2x(t, λa, λd),
S2x(t, λc, λd)}, represented by G2, was processed through a sin-
gle fully-connected DNN layer. In addition to this, another network
was trained with just G1 + ∆ + ∆∆, to provide a baseline for the
multi-resolution feature stream systems.

For all the below experiments the neural network training recipe
used ReLU non-linearity with max-norm regularization. Table 4
shows the PER for multi-resolution processing. First, notice that by
using the three stream G1 + ∆ + ∆∆ compared to the single stream
S1 + ∆ + ∆∆, the PER reduces from 19.0% to 18.4%. However,
when including multi-resolution processing of first and second order
scattering (G1+∆+∆∆ +G2), the PER is at 19.1% which is higher
than the single stream feature of S1+∆+∆∆+S2 at 18.8%.

A closer look shows that the dimension of G2 is 270, and this is
input with a context of 11 into the first DNN layer shown in Figure
1, which has 1,024 hidden units. This accounts for roughly 3 mil-
lion parameters in just this single DNN layer alone, which is roughly
20% of the total number of parameters of the network. We hypothe-
size that the network could be over fitting, and thus explore reducing
the number of hidden units for the DNN layer. Table 4 shows that
by reducing the number of hidden units and thus overall number of
parameters, the PER for multi-resolution G1 + ∆ + ∆∆ + G2 im-
proves. Overall, we see that multi-resolution scatter at a PER of
18.2% offers a 4% relative improvement over the first-order scatter
(i.e., log-mel) at a PER of 19.0%.

Feature Stream PER
S1+∆+∆∆ 19.0
G1+∆+∆∆ 18.4
S1+∆+∆∆+S2 18.8
G1+∆+∆∆ +G2+1024 HU 19.1
G1+∆+∆∆ +G2+256 HU 18.7
G1+∆+∆∆ +G2+128 HU 18.2
G1+∆+∆∆ +G2+ 64 HU 18.6
a HU - Hidden Units

Table 4. Comparison of multi-resolution features on CI phoneme
recognition

5. SCATTERING FEATURES WITH
CONTEXT-DEPENDENT STATES

In [27] it was observed that performance of CNNs in TIMIT
improved by using context-dependent states rather than context-
independent states. We explore the behavior of scattering features
using 2,400 CD-state output targets [17].

Table 5 first shows that using first and second order scatter, sin-
gle stream (S1+∆+∆∆+S2) has a PER of 17.9%, and offers an im-

provement over first-order scatter alone (S1+∆+∆∆) at a PER of
18.7%. Furthermore, by including multi-resolution first and second
order scatter, we achieve a PER of 17.4%, which is a 7% relative
improvement over the first-order scatter (i.e., log-mel) at a PER of
18.7%. To our knowledge the PER of 17.4% is one of the lowest
reported on TIMIT to date, compared to the previously best reported
number of 17.7% [28] using RNNs and 17.8% using CNNs [27].
A variant of the multi-resolution scattering features were used to
achieve the lowest error rate of 15.8% for TIMIT phoneme classi-
fication by Joakim et al [13].

Feature Stream PER
S1+∆+∆∆ 18.7
S1+∆+∆∆+S2 128 HU 17.9
G1+∆+∆∆ +G2+128 HU 17.4
a HU - Hidden Units

Table 5. Comparison of features on CD phoneme recognition

6. CONCLUSIONS AND FUTURE WORK

In this paper we showed that using higher resolution detail, in the
form of deep scatter spectra, is useful for acoustic modeling. We
detailed the challenges in modeling higher order spectra, in combi-
nation with neural networks. We identified the appropriate network
topology and recipe for effectively training networks with scattering
features. On TIMIT, we found that the scattering features provided
a PER of 18.2% on a CI system, a 4% relative improvement over the
baseline log-mel system at 19.0%. In addition, using a CD system,
scattering features provides a PER of 17.4%, a 7% relative improve-
ment over the baseline log-mel system at 18.7%.

In the future, we plan to extend this work in many directions.
First, it would be interesting to explore the behavior of scattering
transforms on LVCSR tasks where the end goal is word recognition.
We suspect that in tasks such word recognition, where the interest is
in word events which occur at a longer time scale, averaging filters
with a larger time span can be applied. These help in achieving in-
variance/stability to distortions over longer durations. Furthermore,
learning the scattering transforms jointly with the rest of the CNN,
motivated by work in [1] would also be interesting.

Further an extensive comparison of the Deep scatter spectrum
features with TRAPs, MRASTA and other modulation spectra based
features has to be done.
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