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ABSTRACT
Choosing a distance preserving measure or metric is fun-
damental to many signal processing algorithms, such as k-
means, nearest neighbor searches, hashing, and compressive
sensing. In virtually all these applications, the efficiency
of the signal processing algorithm depends on how fast we
can evaluate the learned metric. Moreover, storing the chosen
metric can create space bottlenecks in high dimensional signal
processing problems. As a result, we consider data dependent
metric learning with rank as well as sparsity constraints. We
propose a new non-convex algorithm and empirically demon-
strate its performance on various datasets; a side benefit is
that it is also much faster than existing approaches. The
added sparsity constraints significantly improve the speed of
multiplying with the learned metrics without sacrificing their
quality.

Index Terms— Metric learning, Nesterov acceleration,
sparsity, low-rank, proximal gradient methods

1. INTRODUCTION

Learning “good distance” metrics for signals is key in real-
world applications, such as data classification and retrieval.
For instance, in the k-nearest-neighbor (KNN) classifier, we
identify the k-nearest labeled images given a test image in the
space of visual features. Hence, it is important to learn met-
rics that capture the similarity as well as the dissimilarity of
datasets. Interestingly, several works have shown that prop-
erly chosen distance metrics can significantly benefit KNN
accuracy as compared to the usual Euclidean metric [1–3].

In the standard metric learning problem (MLP) we learn
a (semi-) norm ‖x‖B =

√
xTBx that respects data x ∈ RN

dissimilarity constraints on a set D while obtaining the best
similarity on a set S:

min
B�0

∑
(xi,xj)∈S

‖xi − xj‖2B

subject to
∑

(xi,xj)∈D

‖xi − xj‖2B ≥ 1.
(1)
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Even though (1) is a convex program, its numerical solution
proves to be challenging since it does not fit into the stan-
dard convex optimization formulations, such as semidefinite
or quadratic programming. Moreover, as the number of vari-
ables is quadratic with the number of features, even the most
basic gradient-only approaches do not scale well [1, 4].

In general, the solution of (1) results in metrics that are
full rank. Hence, the learned metric creates storage as well
as computational bottlenecks. As a result, several works [2,
3, 5, 6] consider learning rank-constrained metrics. Unfortu-
nately, enforcing rank constraints on the already computation-
ally challenging MLP (1) makes it non-convex. Surprisingly,
under certain conditions, it is possible to prove approxima-
tion quality and the generalization of solution algorithms in
the high-dimensional limit [3, 5].

In this paper, we reformulate the standard MLP (1) into
a non-convex optimization framework that can incorporate
sparsity constraints in addition to the rank. That is, we learn
distance metrics B = AAT such that A ∈ RN×r for a
given r � N and A is sparse. A sparse A has computa-
tional benefits like low storage and computational complex-
ity. Consequently, this work could be useful in sparse low-
rank matrix factorization which has numerous applications in
machine learning including learning [7] and deep neural net-
works (deep learning) [8] and autoencoding. This work is also
related to optimizing projection matrices introduced in [9].

Our approach can also incorporate additional convex con-
straints on A. To illustrate our algorithm, we use a symmet-
ric and non-smooth version of the MLP (1) in the manner
of [4, 5]. We then use the Nesterov smoothing approach to
obtain a smooth cost that has approximation guarantees to the
original problem, followed by Burer-Monteiro splitting [10]
with quasi-Newton enhancements. Even without the sparsity
constraints, our algorithmic approach is novel and leads to
improved results over the previous state-of-the-art.

The paper is organized as follows. Section 2 sets up the
notation used in the paper and introduces the needed defini-
tions; while Section 3 describes the problem and its reformu-
lation into an appropriate optimization framework. Section
4 states the algorithm and its theoretical background; and its
followed by Section 5 which showcases the experimental re-
sults. Section 6 concludes the paper.
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2. PRELIMINARIES

Notation: We denote integer scalars by lowercase letters
(e.g., i, k, r, p), real scalars by lowercase Greek letters (e.g.,
α, δ, λ), sets by uppercase calligraphic letters (e.g., S), vec-
tors by lowercase boldface letter (e.g., x) and matrices by
uppercase boldface letter (e.g., X). We denote SN×N+ as the
set of positive semidefinite (PSD) matrices. The usual `1
norm and `0 pseudo-norm (number of non-zero entries) are
extended to matrices by reshaping the matrix to a vector.

In Section 3, we reformulate (1) into a problem that is
tightly connected with learning Johnson-Lindenstrauss (JL)
embeddings or restricted isometry property (RIP) dimension-
ality reduction. A matrix Φ ∈ Rr×N is a JL embedding of p
points, X := {xi}pi=1, if r = O (log p) and there exists a pos-
itive constant δ > 0 such that the following relations holds:

(1−δ)‖xi−xj‖22 ≤ ‖Φ(xi−xj)‖22 ≤ (1+δ)‖xi−xj‖22, (2)

for every xi,xj ∈ X , xi 6= xj [11, 12]. Using the definition
of the metric in Section 1, we can rewrite (2) as follows:

(1− δ)‖xi−xj‖22 ≤ ‖xi−xj‖2B ≤ (1 + δ)‖xi−xj‖22, (3)

where B = ΦTΦ. Without loss of generality, to simplify the
algebra, we are going to enforce the similarity or dissimilarity
constraints on normalized differences of data points:

Definition 1. Given X ⊂ RN we define the set of secants
vectors of points xi,xj ∈ X with xi 6= xj as:

S(X ) :=

{
vij =

xi − xj
‖xi − xj‖2

}
. (4)

3. PROBLEM DESCRIPTION

In this section, we set up the basic optimization problem that
reveals the computational difficulty of (1). In general, the
MLP (1) considers relationships between points based on
their pairwise distances. Hence, we would require that the
metric B preserves the pairwise distances of the points in D
up to a distortion parameter δ as in (3) to yield a more strin-
gent constraint for (1) while ignoring this requirement for
points in S. However, we set up a symmetric problem which
then uses RIP in the manner of [4, 5] that can be adjusted
depending on the individual application.

In this symmetric formulation, using secant vectors, (3)
simplifies to |vTijBvij − 1| ≤ δ for xi,xj ∈ X with xi 6= xj .
Re-indexing the vij to vl for l = 1, . . . ,M , where M =

(
p
2

)
,

we form the set of M secant vectors S(X ) = {v1, . . . ,vM}
into an N ×M matrix V = [v1, . . . ,vM ]. Then we learn a
B that minimizes |vTl Bvl − 1| (for a slight abuse of notation
we will refer to this quantity as δ) over all vl ∈ S(X ). It is
known [13, 14] that the rank of B can be bounded as follows:

rank(B) ≤

⌈√
8|S(X )|+ 1− 1

2

⌉
. (5)

Let us define a linear transform A : SN×N+ → RM as
A (B) := diag

(
VTBV

)
, where diag(H) denotes a vector

of the entries of the principal diagonal of the matrix H.
Learning the B that minimizes δ for our symmetric MLP

(1) therefore becomes the following non-convex problem:

min
B
‖A (B)− 1M‖∞

subject to B � 0, rank(B) = r.
(6)

Instead of learning B directly, we instead opt to learn
its factors, i.e., B = AAT , which is also known as Burer-
Monteiro splitting [10]:

min
A∈RN×r

‖A
(
AAT

)
− 1M‖∞ (7)

The advantages of the non-convex formulation (7) is two fold:
(i) it reduces storage space since the optimization variable
lives in a much lower dimensional space (i.e., N × r � N ×
N ), and (ii) it enables us to add additional constraints and
regularizers on the factors A directly.

For instance, while the rank constraints can be achieved
by constraining that the dimension of A be N × r, we can
also consider adding an `0-norm constraint as well as an `1-
regularizer term (as in [15]) to have the following more gen-
eral formulation.

min
A∈RN×r

‖A
(
AAT

)
− 1M‖∞ + λ‖A‖1

subject to: ‖A‖0 ≤ σ.
(8)

The `0-norm constraint enables us to specify a priori the spar-
sity of the output of our algorithm. It is also possible to add a
constraint on the Frobenius norm of A directly.

Note that the approach in [4] solves a convex relaxation
of (6), where the rank constraint is replaced by a nuclear norm
constraint. That solution works in the N × N space and
requires eigendecompositions. In contrast, we do not do a
eigendecomposition in our approach to recover A. Moreover,
we can strictly enforce rank constraints while minimizing δ.

Unfortunately, our problem (8) is not smooth and hence
we only have access to a subgradient of the objective. Instead,
we consider the following smoothed version:

min
A∈RN×r

f(A
(
AAT

)
− 1M ) + λ‖A‖1

subject to: ‖A‖0 ≤ σ.
(9)

The simplest choice of a smoothing function is f(z) = ‖z‖22
which can be interpreted as penalizing the average δ for all se-
cant vectors. In this paper, we focus on the smoothing func-
tion choice f(z) = fµ(z) = µ log(

∑M
i=1 e

zi/µ + e−zi/µ)
since ∀ z ∈ RM , limµ→0 fµ(z) = ‖z‖∞. Furthermore, fµ
is C∞ on RM and its gradient (in z) is Lipschitz continuous
with constant µ−1 (e.g., [16]), though unfortunately the gra-
dient is not Lipschitz in A (when z = A(AAT )− 1M ).
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4. PROXIMAL GRADIENT METHOD

The proximal gradient method (aka forward-backward split-
ting method) generalizes the basic projected gradient method.
This method is used on problems of the type:

min
A

f(A) + φ(A) (10)

under the assumption that f has a gradient. By allowing φ
to take on infinite values, this can model constraints. For ex-
ample, the constraint A ∈ C is modeled using the indica-

tor function ιC(A) =

{
0 A ∈ C
+∞ A /∈ C

. Our main tool is the

proximity operator “prox”, defined as:

Definition 2. For a fixed τ > 0, the proximity operator of a
function φ is the map

proxτφ(·)(Y) ∈ argmin
A

τφ(A) +
1

2
‖A−Y‖22.

The prox is unique and non-expansive if φ is convex,
proper and lower semi-continuous. Note that this reduces to
the projection onto C when φ = ιC . The proximal gradient
method is listed in Algorithm 1; see [17] for variants, appli-
cations and convergence results. We also include a Nesterov
accelerated variant due to [18] that requires almost no extra
computation and has much faster empirical convergence.

Algorithm 1 General proximal gradient method with Nes-
terov acceleration
Require: stepsize τ , prox function proxφ, gradient function
∇f(·), initial point A0

1: Y ← A0

2: If using Nesterov acceleration, αk ≡ k
k+3 , otherwise,

αk ≡ 0
3: for k = 1, 2, . . . do
4: Ak+1 = proxτφ(·)(Y − τ∇f(Y))
5: Y = Ak+1 + αk(Ak+1 −Ak)
6: end for

Convergence. When ∇f is Lipschitz continuous with
parameter L, the step-size is τ ≤ 1/L, and if both f and φ are
convex, then the sequence (Ak) converges to a global mini-
mizer of (10). Unfortunately, both f and φ in our model (9)
are non-convex and ∇f is not Lipschitz. However, if (Ak)
is bounded, then ∇f is Lipschitz restricted to this set, and
also by the boundedness of the sequence and by some tech-
nical regularity of the function, the work of [19] guarantees
convergence to a local stationary point. In this sense, if the
algorithm has converged, we can a posteriori use the bound-
edness of the sequence to show that the limit point is a local
stationary point. This is a slightly different guarantee than
that proved in [20].

Computing the gradient. We restrict now this anal-
ysis to the log-sum-exp case since the derivation for the
quadratic case is even simpler. Define the log-sum-exp
function lse(z) = µ log(

∑
i e
zi/µ) which, for a fixed z,

converges to maxi zi as µ → 0+. To approximate ‖z‖∞
we use lse(D(z)) where D(z) = (z,−z) (with adjoint
(D∗(w))i = wi − wi+M for w ∈ R2M ). Altogether, we
have

f(A) = lse(D(A(AAT )− b)).

Note that the adjoint of A(z) is A∗(z) = Vdiag(z)VT , and
(∇ lse)i = (

∑
i′ e

xi′/µ)−1exi/µ. Viewing f as the composi-
tion of four functions (lse, D,A(·)− b and A 7→ AAT ) and
using the chain rule gives

∇f(A) = 2Vdiag(D∗(z))VTA (11)

and z = ∇ lse(D(A(AAT )− b)).
Computational Complexity. Compared to previous ap-

proaches, a major benefit of our approach is much better com-
putational complexity if implemented carefully. The major
computational bottleneck of the entire algorithm is in com-
puting A(B) and in A∗(z). To be efficient, we (i) exploit the
fact that B = AAT , and (ii) never explicitly form A∗(z) as
a matrix but rather treat this as an implicit operator that acts
on other matrices.

Specifically, A(B) = diag(VTAATV) = diag(V̄T V̄)
for V̄ = ATV. This simplifies to taking the norms of the
rows of V̄, and altogether requires O(rNM) flops, com-
pared to naively computing B = AAT and then taking
A(B) which requires O(MN2) flops (recall r � N �M ).
For A∗, we appeal to (11) directly and compute VTA and
then compute the rest of the multiplies, and again we re-
quire O(rNM) flops, compared to O(N2M) naively. Meth-
ods based on convex relaxations do not see these numerical
speed-ups since their variables B are generally rank N not r.
Furthermore, at every iteration these convex methods require
SVDs of B which can cost up to O(N3).

Computing the proximity operator. By making use of
the indicator function we can write the non-smooth portion of
(9) as φ(A) = λ‖A‖1 + ι{A|‖A‖0≤σ}. In the special case
when λ = 0, the proximity operator of φ is just the (possibly
non-unique) projection onto the top σ largest (in magnitude)
entries. In the other special case when σ ≥ Nr so that the
`0 term constraint has no effect, the proximity operator of φ
is just soft-thresholding. In the general case, the proximity
operator at the point z is calculated by first soft-thresholding z
to get ẑ and then calculating λτ |zi|+ 1

2 (ẑi−zi)2 and choosing
the top σ components that minimize this (i.e., by sorting). It
is even possible to avoid a sort, but implementation details are
unimportant since this step is much cheaper than computing
the gradient.

Without sparsity constraints. If we drop the sparsity
constraint ‖A‖0 ≤ σ and the `1 regularizer, the objective
is smooth and unconstrained. In this case, our code uses L-
BFGS [21] as implemented in minFunc package [22] and
using the gradient described above. Our experiments show
L-BFGS is slightly faster than the Nesterov accelerated first-
order algorithm, and it also has the advantage that it does not
require an accurate initial step-size estimate.
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5. EXPERIMENTAL RESULTS

We determine the quality of our approximate solution to the
MLP (1) by how small δ is. In the first set of experiments
we investigate how δ varies with the rank of the matrix we
learn using both a set of synthetic data and a set of images
of motorbikes [23]. The synthetic data set is the manifold
data set used in [4], composed of translating white squares in
a black background. We generate manifold images sizes of
40× 40 pixels and resize grayscale images of the motorbikes
to also be 40 × 40 pixels, resulting in points of dimension
N = 1600.

We call the implementation of Algorithm 1 for metric
learning the Fast Adaptive Metric Learning (FAML) algo-
rithm. Using FAML we learn sparse (with sparsity σ fixed at
10%, and λ = 0) and dense factors of a distance metric X
of the secant vectors of these points; we initialize the dense
version with the PCA matrix, and the sparse version using the
dense solution. Figure 1 shows how δ varies with the rank
(number of rows) of the dense (“FAML - dense”) and sparse
(“FAML - sparse”) factors of the matrix we learned, and com-
pares to a random projection matrix (“Gaussian”) and a PCA
metric of the same data sets (“PCA”). Both our sparse and
dense matrices have smaller δ. PCA is performed in a scal-
able way using a randomized SVD [24].

We also compare the matrices we learn to those matrices
learned using NuMax and NuMax CG [4] in terms of small-
ness of rank and δ. Precisely, we fixed a rank and run FAML
to obtain a δ, then use this δ as an input for NuMax and Nu-
Max CG and record the rank they output. The right panel plot
of Figure 1 show that both versions of FAML outperform both
versions of NuMax in the low-rank regime, whereas NuMax
does better when the rank r is larger. Note that it is always
possible to initialize FAML-dense using the NuMax or Nu-
Max CG solution if we are willing to spend extra time.

Fig. 1. Plots of the relationship between the δ (mean over
10 trials) and the rank of the matrices we learn from 2775
secants. Using a subset of the motorbike images of dimen-
sion N = 40 × 40, a comparison of FAML with Left panel:
Gaussian and PCA, Right panel: NuMax and NuMax CG.

In the above-mentioned experiment we compare the time
take by FAML to NuMax. The left panel of Figure 2 shows

that either version of FAML gives smaller δ in shorter time
than NuMax and NuMax CG. Similarly, given an input rank,
FAML converges faster than NuMax and NuMax CG, as
shown in the right panel of Figure 2.

Fig. 2. Speed comparison in terms of time taken to get a target
rank ( or equivalently for a target δ). Using manifold data, a
comparison of FAML with Left panel: Gaussian and PCA,
Right panel: NuMax and NuMax CG.

We also explore the high-N case by taking the full resolu-
tion motorbike images from [23], so the dimension becomes
N = 163 × 261 = 42543. We select 50 points and gener-
ate all 1225 possible secants. Figure 3 shows we can achieve
moderate δ for low ranks, and do much better than PCA. The
NuMax and NuMax CG algorithms were run on this data but
did not work because they require forming N ×N dense ma-
trices which do not fit in the 8 GB of RAM of the computer.
Combined with the results of Figure 1, this suggests FAML
outperforms NuMax when N is large or r is small.
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Fig. 3. Motorbike data with N = 42543.

6. CONCLUSION

We presented an optimization formulation of the metric learn-
ing problem that can handle sparsity and rank constraints. The
enforcement of sparsity appears to be novel and may have im-
pact in applications that require sparse matrices (e.g., Low-
Density Parity Check codes) for speed or hardware imple-
mentation reasons. Our code is low-memory due to careful
construction of the algorithm and implementation, and if it
converges, it does so rapidly due to Nesterov acceleration and
L-BFGS. In either the low-rank or high dimension regime,
the method outperforms the NuMax algorithms. For further
research we will apply NuMax CG’s column generation tech-
niques in order to handle more secant vectors.
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