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ABSTRACT

Functional near-infrared spectroscopy (fNIRS) signals offer

an interesting alternative to functional magnetic resonance

imaging (fMRI) when investigating the temporal dynamics of

brain region responses during activations. The hemodynamic

response function (HRF) is the object of primary interest to

neuroscientists in this case. Making use of a semiparamet-

ric model to characterize the oxygenated (HbO) and deoxy-

genated (HbR) fNIRS time-series and a sparsity assumption

on the HRF, a new method for non-parametric HRF estima-

tion from a single fNIRS signal is derived in this paper. The

proposed method consistently estimates the HRF using a pro-

file least square estimator obtained using the local polynomial

smoothing technique applied to estimate the drift and intro-

ducing a regularization penalty in the minimization problem

to promote sparsity of the HRF coefficients. The performance

of the proposed method is assessed on both simulated and

fNIRS data from a finger tapping experiment.

Index Terms— Functional near infrared spectroscopy,

hemodynamic response function, sparse estimation, semi-

parametric model

1. INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a non-

invasive brain imaging technique that measures functional

brain activity through simultaneous recordings of the con-

centration changes of oxygenated (HbO) and deoxygenated

(HbR) hemoglobin. It has shown great potential to ana-

lyze cognitive functions in un-restrained environments. Un-

like other neuroimaging techniques such as fMRI and EEG,

fNIRS provides a balance between temporal and spatial reso-

lution. Furthermore, the independent observation of HbO and

HbR in fNIRS measurements and access to their sum as total

hemoglobin (HbT) characterizes the governing mechanism

of neuronal dynamics in a better way than the blood oxygen

level-dependent (BOLD) fMRI signal alone [1].

HbO and HbR are the primary source of signal contrast in

fNIRS measurements. These signals are negatively correlated

during neural activations through a mechanism known as neu-

rovascular coupling [2]. Neural activity induces changes in

tissue oxygenation which, in turn, modulate the absorption

and scattering of the infrared light through the brain tissue.

Indeed, HbO and HbR have different attenuation spectra with

characteristic properties in the optical window of the near-

infrared spectral range 680 − 900 nm [3, 2]. Therefore,

different characterizing wavelengths are used in the optical

window in fNIRS to differentiate between the two qualitative

measures associated with the neural activity. The HbO and

HbR as a first approximation are modeled as a convolution

of the experimental paradigm characterizing the stimulus by

the hemodynamic response function (HRF). HRF models the

impulse response of the neurovascular system [4] that is as-

sumed to be linear time-invariant [5].

HRF shape varies considerably across subjects and regions

[6] apart from its variability across tasks. Therefore, accurate

HRF estimation is essential to characterize the temporal dy-

namics of brain region response during activations, and the

region involvement in functional and effective connectivity

[7]. Based on generalized linear model (GLM), the available

methods for HRF estimation from fMRI data can be used to

estimate the HRF from fNIRS time-series [8]. Among them,

nonparametric estimation methods allow more flexibility than

parametric HRF estimation methods and offer accuracy in the

estimation by inferring the HRF at each time sample [9, 10].

Besides the noise, the estimation of the HRF is further com-

plicated by the presence of drift. Nonparametric methods

introduced so far include a parametric part to infer the sys-

tematic drift, commonly modeled by polynomials and splines

[11] and functions from the discrete cosine transform [10].

However, the relatively un-restrained nature of fNIRS data

acquisition system make it susceptible to large head motions

than fMRI scanners. This can give rise to severe motion re-

lated artifacts that substantially degrade signal quality [12].

Effective HRF estimation requires a modeling approach that

efficiently account for the variability of the baseline drift.

Though the drift is considered as a nuisance component, its

appropriate parametrization is needed for efficient HRF esti-
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mation. To yield more accurate estimation of the time course

behavior of neuronal responses, a nonparametric approach is

also used for the drift estimation in this paper. The use of the

nonparametric component for the drift leads to semiparamet-

ric inference of the underlying HRF [13].

The HRF estimation methods proposed thus far have con-

sidered the dimension of the HRF parameter vector known a

priori. However, this parameter is unknown and its estimation

should be taken into when estimating the HRF. The HRF can

be viewed as a sparse function in time. Using this as prior

information, a new consistent HRF estimation method that

does not require knowledge of the dimension of the HRF

a priori is developed in this paper. The proposed approach

uses a profile least square estimator obtained using the local

polynomial smoothing technique applied to estimate the drift

and a regularization penalty in the minimization problem to

promote sparsity of the HRF. The proposed method has the

advantage of generating a consistent estimate of the HRF.

The performance of the proposed HRF estimation method

is assessed on both simulated and experimental fNIRS data

from a finger tapping experiment.

2. FNIRS TIME SERIES MODEL

The HbO or HbR signals yi = (yi1, ..., yiN )> measured in

channelCi over the time course ofN acquired samples during

an fNIRS experiment characterizes the concentration changes

of oxygenated and deoxygenated hemoglobin in that region

of the brain. This fNIRS signal is comprised of three com-

ponents: an experimentally induced controlled activation re-

sponse, an uncontrolled confound part or a baseline drift (in-

cluding possible unknown nuisance effects) and a noise term

[9, 14, 15]. In matrix form, the fNIRS signal can be described

with the following model

yi = Xθi + Pφi + εi, εi ∼ N(0, σ2
ε IN ), (1)

whereX is a known (N × p) design matrix consisting of the
lagged stimulus covariates. The (N × q) drift matrix P is a

nuisance covariate matrix that takes the potential drift and any

other nuisance effect into account. The elements of φi (for

each voxel) are the corresponding coefficients. The parameter

vectors θi and φi are unknown p and q dimensional vectors,

representing the unknown HRF samples to be estimated and

the nuisance variables, respectively. In practice the dimension

q can be estimated using a univariate model selection criterion

[16, 17, 18]. Assuming pre-whitenedmeasurements, εi repre-

sents independent and identically distributed Gaussian white

noise with unknown variance σ2
ε .

The parametric component Pφi is very useful for providing

a parsimonious description of the baseline drift. However, it

is used at the risk of introducing a modeling bias. Alterna-

tives that offer more flexibility in approximating the drift can

be obtained by using a nonparametric component [19]. This

case leads to the use of a semiparametric model for hemody-

namic response inference in the presence of unknown smooth

drift. In the matrix vector form, this is described by

yi = Xθi + fi + εi, (2)

where fi = (fi(t1), ..., fi(tN ))> is a discrete sequence, in-

dependent of X , representing the uncontrolled baseline drift

including other unknown nuisance effects. Compared with

(1) this model has the advantage of not assuming any particu-

lar shape for the HRF as well as for the drift function. Taking

full advantage of these flexible models will help reduce bias

due to model miss specification.

3. HRF ESTIMATION METHOD

In the development that follows, a new approach for HRF es-

timation in a single channel Ci in the presence of unknown

smooth drift is derived for the case of unknown HRF dimen-

sion p. While the HRF dimension p is assumed not known, it

is set sufficiently large to include the true dimension. Looking

closely at a theoretical HRF, of which an example is depicted

in Fig. 1, we can observe that it is moderately sparse. There-

fore the sparsity assumption is applied to the HRF to develop

an efficient HRF estimation algorithm from a single channel

data.

The parametric component of model (2) is the primary inter-
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Fig. 1. Illustration of the theoretical HRF (left) and the drift

used in the simulation (right)

est. The nonparametric component is a nuisance effect. The

proposed HRF estimation procedure make use of the initial

estimate

θ̂i =





N−1
∑

j=1

(Xj+1 −Xj)
>(Xj+1 −Xj)





−1

.

N−1
∑

j=1

(Xj+1 −Xj)
>(yi,j+1 − yi,j) (3)

obtained using the first order difference time series and the

assumption

fi(tj+1)− fi(tj) ' O

(

1

N

)
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obtained by assuming that the drift is a superposition of in-

strumental and physiological effects that are Lipschitz con-

tinuous [20, 21, 15].

Let S be an N × N a local linear smoothing matrix [22] as-

sociated with the time points (t1, ..., tN) whose (i, j) entry is
given by

S(i, j) =

(

1

σ
, 0

)

M−1(1, tj − ti)
>K

(

(tj − ti)

σ

)

where K is a Gaussian kernel and σ > 0 is a bandwidth pa-
rameter andM =

[

Z(ti)
>W (ti)Z(ti)

]

with

W (t) =
1

σ
diag

(

K

(

(t1 − t)

σ

)

, ...,K

(

(tN − t)

σ

))

and

Z(t) =







1 t1 − t
...

...

1 tN − t






.

Using an estimate of θi,

zi = yi −Xθi (4)

can be viewed as an approximation of the noisy drift

zi ' fi + εi, (5)

and an estimate of fi using S is given by

f̂i = S (yi −Xθi) . (6)

Substituting (6) in (2) gives

(IN − S) yi = (IN − S)Xθi + εi (7)

where IN is the identity matrix of size N . Assuming the di-

mension of θi, p known the profile likelihood estimate is sim-

ilar to the profile least squares estimate and is given by

θi = argminθ||(In − S)yi − (IN − S)Xθi||2

= M−1X>(IN − S)>(I − S)yi (8)

where M =
[

X>(IN − S)>(I − S)X
]

. However, in prac-

tice p is unknown. Assuming p is sufficiently large to include

the true dimension (8) is used with the sparsity constraint on

θi

θi = argminθi ||ui −Rθi||2 + λ

p
∑

j=1

|θi,j |. (9)

where R = (IN − S)X and ui = (IN − S)yi. Each compo-
nent j of θi, is given by

θi,j =
sign(|u>i Rj | − λ)+

R>

j Rj

, j = 1, ..., p (10)

where (x)+ = xI(x > 0) and Rj is the j
th column of R.

Based on the results from [15, 23], the proposed HRF estima-

tor (6) has the advantage of being consistent and easily imple-

mentable. It also avoids the selection of nuisance covariates

to model the drift.

The proposed HRF estimation algorithm is as follows:

1- Generate an initial estimate of θi using (3)

2- Generate an estimate of the drift using (6)

3- Generate the update estimate of θi using (10)

4- Iterate between 2 and 3 until ||θji − θ
j+1

i ||2 ≤ δ

The convergence of the estimator (10) can be analyzed as fol-

lows. Relation (3) generates a
√
N consistent estimator of the

HRF θi [20][15]. Therefore the estimator of the drift obtained

using (6) achieves the optimal rate that can attain
√
N un-

der certain smoothness conditions of the unknown drift [22].

Based on these results and results from [23] the estimator (10)

can achieve
√
N consistency under certain conditions on λ.

Improved convergence results can be obtained by using the

adaptive Lasso [24] instead the Lasso in (9).

While (3) produces
√
N consistent HRF estimation it will

tend to have high variance. The proposed approach introduce

regularization (bias) to reduce this variance without sacrific-

ing consistency. However, since there is always a cost to pay,

this comes at an increase in computational complexity (few

iterations of steps 2 and 3 above) and additional conditions

on the unknown drift.

4. SIMULATION RESULTS

Simulated event-related fNIRS time series were generated ac-

cording to

y(ti) = x(ti) ? h(t) + f(ti) + ε(ti) (11)

with a single type of stimulus x(t) were used to compare the
proposed HRF estimation approach with the method derived

in [15] were no sparsity assumption was used. For the sim-

ulation, 100 realizations of (11) with N = 200, ti = i
N
,

i = 1, ..., 200 for each variance value of the noise ε, σ2 are

used. The stimuli are generated from independent Bernoulli

events with p(x(ti) = 1) = 0.5. The true HRF is generated

according to [11] with p = 20 and is depicted in figure 1. The
drift function f(ti) = 2sin(π

(

i
N

− 0.21
)

), i = 1, ..., 200 is
used to simulate the drift and i.i.d samples from a zero mean

Gaussian with variance 0.75, 0.5, 0.25, 0.1 and 0.05 were

used for εi = εti . The drift is illustrated in Fig. 1 alongside

the HRF.

Table 1 illustrates the estimation results for

1

p
||ĥ− htrue||2

obtained over the 100 realizations. We can observe that the

proposed method outperforms [15]. While it provides an un-

biased estimate of the HRF, the method described in [15] ex-

hibits a high variance. It can be observed that the weakness
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(a) fNIRS time-series

measurements
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(b) Estimated HRFs using

ordinary least-squares
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(c) Estimated HRFs using

the method of [15]
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proposed method

Fig. 3. a) Real fNIRS time-series from activated brain region during finger tapping task: channel 9 (top), channel 15 (bottom).

b,c,d) HRF estimates from HbO and HbR responses of these activated channels using b) ordinary least squares, c) the method

described in [15], and d) the proposed method. Black color in the sub-figures represents HbR, while Blue represents HbO.

of the method is accentuated as the variance of the noise in-

creases. Results for the proposed method are shown in Fig. 2.

−0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2. Boxplots of ĥ estimated by the proposed method for

σ2 = 0.1 (left )and σ2 = 0.25 (right), the true HRF is repre-
sented by the solid curve.

σ2 0.05 0.1 0.25 0.5 0.75

Method of [15] 0.170 0.355 0.952 2.053 3.046

Proposed 0.125 0.237 0.593 0.935 1.3661

Table 1. Comparison of the MSE calculated over 100 real-

izations for the estimated HRF with the proposed method and

the method given in [15].

5. RESULTS ON FNIRS DATA

The experiment was performed on ten healthy young adults

(mean age 26.9, four males) who performed a finger-tapping

task with no headmotion (FO), finger tapping with small head

motion (FS) and finger tapping with big head motion (FB).

All participants gave written informed consent to participate

in this study, which was approved by the Stanford University

Institutional Review Board. The aim of the experiment was

to investigate the HbO and HbR dynamics during the motor

activity finger tapping task. The finger tapping task consisted

of 10 alternating tapping and resting epochs. Each tapping

epoch lasted 10 s and each resting epoch lasted 20 s (task-

period 30 s). Before the start of the experiment, participants

were asked to sit relaxed and let their right hand rest naturally

on their right knee. When the word “Tap” appeared on the

screen, they began tapping all four fingers on their right hand

at a rate of 3-4 taps/s till a cue on the screen alerted them to

stop. Further details of the experiment can be found in [12]

In this study, we investigated the FS-FB blocks for the con-

centration change of HbO and HbR for one of the subjects.

Apart from the motor activity finger tapping task, further

event-related instructions were given to the participants in

these blocks. These instructions guided them to move their

head in the indicated directions (forward, left, backward and

right) supplemented either by “small” for FS-block or “big”

for FB-block while kept on performing the tapping task.

After delineating the activated region of interest, the resulting

activated HbO and HbR signals from the left motor cortex

were approached for HRF estimation with the ordinary least

squares, the method described in [15], and the proposed

method. Results are shown in Figure 3 for two of the chan-

nels with different HbO and HbR hemodynamics triggered

by underlying neuronal activity in the left motor cortex of the

brain. In comparison to ordinary least squares, the method

described in [15] and the proposed method are well-adapted

to correctly estimate the two different qualitative measures

from real fNIRS data. Furthermore, the proposed method

offers improvement by further reducing the quadratic error of

estimation over [15] as observed from the simulation study.
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