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ABSTRACT 
 
Existing commercial hand prostheses can be controlled from 
the electrical activity (electromyogram or EMG) of remnant 
muscle tissue within the forearm, but are limited in function 
to one degree of freedom of proportional control. In a pilot 
study (N=3 subjects), we used least squares estimation to 
identify a model between forearm electrical activity 
recorded by high-resolution (64 channel) electrode arrays 
(applied over the flexor and, separately, extensor muscles of 
the forearm) to force in the four fingertips. Average errors 
ranged from 4.21 to 10.20 %MVCF (flexion maximum 
voluntary contraction), depending on the muscle contraction 
task performed, number of EMG electrodes in the model 
and the electrode montage selected. Results suggest that, at 
least for intact subjects, 2–4 degrees of freedom of 
proportional control are available from the EMG signals of 
the forearm. 
 

Index Terms— EMG signal processing, biomedical 
signal processing, EMG-force, electromyography 
 

1. INTRODUCTION 
 
Classic myoelectric control of a hand prosthesis provides, at 
most, one degree of freedom of proportional control from 
the electromyogram (EMG) of one extension electrode and 
one flexion electrode, each placed on the skin over the 
remnant muscle tissue of the forearm [1, 2]. Amputees 
desire improved control capabilities, particularly an increase 
in the number of degrees of freedom [1, 2]. One approach to 
increased control is multifunction selection in which 
classification analysis is used to relate features derived from 
forearm EMG to various hand/wrist functions [3–9]. 
Classification accuracies above 95% have been achieved, 
with higher accuracies found when more electrodes are 
used, fewer functions are selected and/or longer EMG signal 
durations are observed. Some studies have concentrated on 
classification of individual finger movements [10–14]. This 
approach can increase amputee function, but does not 
provide the desired proportional control. 

Some recent effort [14–17] has concentrated on the 
goal of providing proportional finger control via EMG-
based estimation of finger joint angles or forces. Force 
estimation may be preferable, as it is likely to be less 
influenced by external forces that interact with the hand. 
However, many questions remain, particularly with respect 
to the number of electrodes required and how their signal 
should be acquired and processed. In particular, the muscles 
of the forearm are small in cross section and packed tightly 
beside each other, making it difficult to sense their activities 
independently. Over the past few years, high resolution 
spatial filtering of EMG array signals has been used to 
localize the electrical potentials of small muscle tissue 
volumes [18–20]. We hypothesized that such systems would 
be useful in separating the source electrical activity of 
distinct hand muscles within the forearm, facilitating more 
accurate EMG-force identification. 

This paper presents the methods and results of a pilot 
study (N=3 subjects) in which commercial high-resolution 
(64 channel) electrode arrays were used to measure EMG 
signals from the extensor and flexor muscles of the forearm 
while recording fingertip flexion-extension forces during 
constant-posture contractions. The goal of the study was to 
investigate and compare the performance of various EMG 
spatial   filters   (“montages”)   in terms of their ability to 
identify an EMG-force relationship for the fingertips. Our 
results showed average errors ranged from 4.21 to 10.20 
%MVCF, depending on the muscle contraction task 
performed, number of EMG electrodes in the model and the 
electrode montage selected. Our results also suggest that, at 
least for intact subjects, 2–4 degrees of freedom of 
proportional control are available from the forearm EMG.  
 

2. METHODS 
 
2.1. Experimental Apparatus 
 
The arm restraint device, shown in Fig. 1, was used to 
record constant-posture finger flexion-extension. The 
subject sat along the table edge with their elbow forming a 
90o angle. The height of the elbow rest plate was adjusted 
for each finger to keep the long axis of the forearm parallel 
to the table. After donning a glove, the palm of the hand 
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Fig. 1.  Photograph of hand/arm secured into the finger restraint. 
Electrode arrays are mounted over the medial (flexion array) and 
lateral (extension array—not visible) aspects of the forearm. 

was secured at the front of the restraint to an upright via 
Velcro. The hand was oriented with the thumb directed 
upwards and the four remaining digits passively curled 
beyond the upright. The height of the hand was adjusted to 
align the distal phalange of any one digits with the load 
beam. A phalange was secured to the load beam by a 
tightly-wrapped Velcro strip. Load on this beam was 
measured with a one degree of freedom load cell and 
amplifier (models LCL-040 and DMD-465WB, 
respectively; Omega Engineering, Inc., Stamford, CT, 
USA). The cut-off frequency of the amplifier lowpass filter 
was 9.4 Hz (second-order, Bessel). Measurement was only 
made on one digit at a time. 

The skin over the circumference of the proximal right 
forearm was scrubbed with an alcohol wipe. Two, 
commercial 64-channel monopolar electrode arrays were 
applied (ELSCH064R3S Adhesive Electrode Arrays, EMG-
USB Amplifier; OT Bioeletronica, Torino, Italy). Each 
array was a rectangular, 13x5 matrix of electrodes (with one 
corner electrode omitted), utilizing 2 mm diameter gel-filled 
electrodes separated by 8 mm center-to-center. The long 
axis   of   the   “flexion”   array   was   oriented   along   the  
circumference of the right forearm, centered on the mid-line 
of  the  medial  aspect  of  the  forearm.  The  second  “extension”  
array was secured with the long axis oriented along the right 
forearm circumference, centered on the mid-line of the 
lateral aspect of the forearm. The eight extension electrodes 
located furthest from the base of the finger restraint along 
the most proximal electrode column were not used, leaving 
56 electrodes. A gap of 3.5–7 cm existed between the 
superior and inferior edges of the two electrode arrays. The 
proximal edge of each EMG array was located three fingers 
width from the olecranon process [21]. A reference 
electrode was applied to the left wrist and a power-line 
attenuation circuit (“driven-right-leg”) was applied to the 
right arm. Each electrode channel had a passband from 10–
750 Hz, CMRR greater than 104 dB at the power line 

frequency, input impedance greater than 1014 Ω,  and input 
referred noise <1 µV RMS. EMG data were sampled at 
2048 Hz with 12-bit resolution. 

A PC was used to collect the finger flexion-extension 
load cell data (128 Hz, 16 bits; synchronized offline with 
the EMG data) and as a subject display. Its 18 inch monitor 
was placed approximately one meter in front of the subject. 
A custom LabView interface displayed a vertical line on the 
screen  that  moved  horizontally  with  the  subject’s  extension-
flexion force. A fixed or dynamic target could also be 
displayed on the screen. 
 
2.2. Experimental Methods 
 
The New England IRB approved and supervised the human 
studies. Three subjects each completed one experiment. 
Subjects had no known neuromuscular deficits of their right 
hand, arm or shoulder. After signing written informed 
consent, subjects were fitted into the hand restraint device. 
Each subject performed separate maximum flexion, then 
extension trials for each of the four digits, repeated twice. 
The average flexion plateau for each digit and the average 
extension plateau for each digit were used as the respective 
maximum voluntary contraction (MVC) values. Subsequent 
contractions were scaled to the MVC of the respective digit. 
The EMG electrode arrays were then secured (see above). 

Subjects next performed five-second constant-force 
contractions. Two such recordings were made for 30% 
MVC flexion and, separately, 30% MVC extension, for 
each digit. Subjects lastly performed a series of slowly 
force-varying (ramp) tracking tasks. The LabView display 
of extension-flexion force was scaled over the range from 
30% MVC extension to 30% MVC flexion. A target signal 
began at the force level half-way between these two 
extremes (this level was not equivalent to zero force, since 
extension and flexion MVCs are not equal), advanced to 
30% extension, continued to 30% flexion, returned to 30% 
extension, and ended back at the half-way force. Tracking 
lasted for 30 seconds, with all target movement at a constant 
speed. Four tracking tasks were completed per digit. 
 
2.3. Methods of Analysis 
 
Data Preprocessing: Data analysis was performed off-line 
using MATLAB. The sampled EMG data were bandpass 
filtered (15–700 Hz) using a fourth-order Butterworth filter, 
and second-order notch filters at the power line frequency 
and all harmonics. Filtering was applied in the forward, then 
reverse time directions to achieve zero phase. Each data 
recording was plotted and reviewed. Channels with 
anomalous data (e.g., obviously corrupted by excessive 
power line noise or motion artifact) were avoided from 
further use. Regardless, all desired electrode configurations 
were achieved. The finger force data were upsampled to the 
same rate as the EMG data (2048 Hz), time-aligned to the 
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Fig. 2.  EMG-force model. Extension and flexion monopolar arrays are spatially filtered into L signals, each 
signal  being  used   to  produce  one  EMG  standard  deviation  (EMGσ)  estimate. Least squares estimation then 
relates the  EMGσ’s  to  force  of  the  four  fingertips  (indexed  by  c).  The  “B”  matrices  hold  the  coefficients of 
the  spatial  filters;;  the  “A”  matrices  hold  the  coefficients  relating  EMGσ  to  force. 

EMG data and scaled to its respective flexion MVC value. 
The fingertip force for inactive fingers was set to zero. 

EMG-Force Processing: The EMG-force model is 
shown in Fig. 2. Numerous classic spatial filters with known 
(pre-selected) spatial filter coefficients were investigated. 
The preprocessed extensor/flexor signal sets ( > @ne iE , , 

> @ne iF , , where i indexes the spatial channels and n indexes 
time) were spatially filtered to produce L extensor/flexor 
channels ( > @nm iE , , > @nm iF , ). A spatial filter is a memory-less 
weighted sum of the monopolar potentials. The EMG 
standard deviation (EMG amplitude estimate) of each 
channel was computed by rectifying each channel and then 
decimating to 10.24 Hz. After decimating, the signal was 
further lowpass filtered  (cut-off frequency of 1 Hz, fourth-
order Butterworth filter applied in the forward, then reverse 
time directions), producing signals > @mEMG iE ,V  and 

> @mEMG iF ,V , where m indexes time at the reduced rate. This 
reduced rate is appropriate as it is approximately ten times 
that of the force signal being estimated [22, 23]. 

For the constant-force recordings, distinct five second 
flexion and extension recordings from each finger were 
concatenated, forming a 40 second data set (4 fingers x 10 
seconds per finger). A fit coefficient was multiplied by each 
of the L extension  EMGσ’s  to  estimate  each  of  the  four  digit  
extension force contributions (total of 4L coefficients). 
Another 4L coefficients were similarly required to estimate 
flexion force contributions. Their difference was the 
estimate of total force for each finger. Linear least squares 
was used to estimate the fit coefficients from a 40 second 
data set. Since there were two constant-force recordings per 
finger per flexion/extension contraction, two such sets were 
available per subject. One set was used for coefficient 
training and the second for performance testing, with full 
leave-one-out cross-validation. The average error from the 

two test cross-
validations was 
expressed in percent 
MVC flexion 
(%MVCF), relative to 
each respective digit. 

For the slowly 
force-varying (ramp) 
contractions, the first 
and last five seconds 
of each 30 second 
tracking trial were 
discarded, leaving 
one complete 
contraction cycle of 
duration 20 seconds 
per digit. Four 
sequential tracking 

recordings, representing data from each of the four digits, 
were concatenated to form an 80 second data set. Linear 
least squares was again used to estimate fit coefficients 
(same method as described above) from an 80 second 
tracking set. Four tracking data sets were available per 
subject. Three data sets were used for coefficient training 
and the fourth for performance testing, with full leave-one-
out cross-validation. The average error from the four cross-
validations was expressed in %MVCF, relative to each 
respective digit. 

For each of the constant-force and ramp contraction 
data sets, each extension/flexion EMG array contained 13 
rows of electrodes. An L=13 channel monopolar spatial 
filter (montage) was formed by choosing one of the central 
electrodes in each row. Then, alternate rows were selected 
to form an L=7 channel monopolar spatial filter. By 
skipping increasingly more rows, filters were formed for 
L=5 and 4 channels. Next, these four row selections were 
repeated, utilizing additional adjacent columns to form 
bipolar and linear double difference (LDD) filters [20]. 
Note that these filters were formed along the presumed 
direction of action potential propagation. Lastly, normal 
double difference (NDD) filters were formed. Because of 
the additional rows required to form NDD filters, the 
selected channel sizes were L=11, 6 and 4. Thus, a total of 
15 classic spatial filters were investigated. 
 

3. RESULTS 
 
Fig. 3 shows sample results from the constant-force trials 
using a 5-channel, bipolar electrode montage. Table I shows 
the complete summary results for all montages and number 
of EMG channels studied. Fig. 4 shows sample results from 
the slowly force-varying (ramp) trials using a 13-channel 
monopolar montage. Table II shows the complete summary 
results. Taken together, the results suggest that the 
montages known to be more spatially selective (LDD and 
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Fig. 3.  Constant-force trial sample EMG-force test results of 
estimated (jagged blue line) and actual (solid red line) force vs. 
time using L=5 bipolar montage. Subject WZ04, trials 01–08. 
 
 

TABLE I 
CONSTANT-FORCE TRIAL AVERAGE RMS TEST ERROR RESULTS 

(%MVCF) 
 

EMG Channels 
(L) 

Spatial Filter 
Mono Bipolar LDD NDD 

13 (11 for NDD) 9.25 8.03 10.02 10.03 
7 (6 for NDD) 8.95 8.99  8.64 10.20 

5 8.34 7.22 10.31 — 
4 7.82 8.43  8.17  8.82 

 
 

 
Fig. 4.  Slowly force-varying (ramp) force trial sample EMG-
force test results of estimated (jagged blue line) and actual (solid 
red line) force vs. time using L=13 monopolar montage. Subject 
WZ09, trials 26, 27, 36, 37. 
 

TABLE II 
SLOWLY FORCE-VARYING (RAMP) TRIAL AVERAGE RMS TEST 

ERROR RESULTS (%MVCF) 
 

EMG Channels 
(L) 

Spatial Filter 
Mono Bipolar LDD NDD 

13 (11 for NDD) 4.41 5.49 5.97 5.51 
7 (6 for NDD) 4.51 5.68 5.73 5.58 

5 4.69 5.37 5.91 — 
4 4.84 5.45 5.99 5.51 

 
 NDD) did not produce lower EMG-force estimation errors; 

in fact, their errors were generally higher. There was also 
not a strong trend for lower errors as the number of EMG 
channels was increased. The constant-force results seem to 
show higher average errors overall, perhaps due to the small 
duration of signal (5 seconds) available for training [24]. 
Given the small number of subjects, statistical comparisons 
were not pursued. 
 

4. DISCUSSION AND CONCLUSIONS 
 
The EMG-force errors found in this study (ranging from 
4.21 to 10.20 %MVCF) are similar to errors found in studies 
of other joints (c.f., [24]). This outcome is significant, since 
there is currently no consensus within the literature that 
multiple degrees of freedom of proportional control are 
available—at least in intact subjects—to relate forearm 
electrical activity to fingertip forces. Further, these results 
suggest that there may be no obvious advantage to high-
resolution (and high channel count) electrode arrays and 
spatial montages. Such arrays are thought to reduce EMG 
crosstalk (undesired recording of more distant muscles away 
from the recording site). Crosstalk is thought to confound 
EMG-force identification, although blind source separation 
techniques have been attempted to resolve this problem 

[25]. If high resolution arrays provide little or no advantage, 
then standard electrode hardware might be used instead. 
Such hardware is simpler, less expensive and more readily 
available. In fact, existing commercial high resolution 
arrays are not suitable (or designed) for use in commercial 
prostheses. 

The sample size used in this study was small and 
primarily intended as part of a pilot study. While the results 
are encouraging, a number of limitations exist, including: 
the lack of dynamics in the contraction forces, the limitation 
of constant-posture contractions, the omission of models 
that incorporate the thumb (necessary for many hand 
actions/grips) and the limited model forms studied. 

In summary, EMG signals were acquired from the 
extensor and flexor muscles of the forearm during constant-
posture contractions and related to the force produced in the 
four fingers (index, middle, ring and pinky). Various 
conventional electrode montages and number of EMG 
channels were considered. Over a range of contraction 
forces spanning 30% MVC extension to 30% MVC flexion, 
RMS EMG-force error ranged from 4.21–10.20 %MVCF, 
depending on the montage and number of channels. Results 
were encouraging for finger EMG-force applications in 
prosthesis control. 
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