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ABSTRACT
EEG-based Brain Computer interfaces (BCIs) often rely on power
spectral density features to represent relevant aspects of brain ac-
tivity. The information flow within human brain networks and the
corresponding connectivity patterns may contain useful information
to improve BCI performance, however they are typically not lever-
aged in current systems. In this paper, analyzes of information flow
between independent sources of brain activity have been incorpo-
rated into the feature extraction stage of a BCI. For this purpose,
connectivity measures based on multivariate autoregressive models
have been estimated and are applied as filters to power spectral den-
sity based features. Two publicly available data sets have been used
to evaluate the proposed feature extraction method: a two-back task
and a motor imagery task. The results demonstrate significant per-
formance improvements of the proposed method over band-power
features and indicate that connectivity in brain networks can be used
as powerful feature-level filters for BCIs.

Index Terms— Connectivity, Granger causality, direct directed
transfer function, brain-computer interfaces, electroencephalogra-
phy

1. INTRODUCTION

The brain’s neural network is a huge information processing system,
in which multiple brain areas interact with each other in order to
perform cognitive tasks. Recent progress in neuroengineering has
shown that the pathways of information flow between different brain
activity sources are of particular importance when analyzing brain
function [1]. Granger Causality (GC) based connectivity measures
are an established means to analyze the information flow among dif-
ferent activity sources in the brain. Multiple GC based connectivity
measures have been proposed that can be calculated using multivari-
ate autoregressive (MVAR) models, including partial directed coher-
ence [2] and direct directed transfer function [3].

Non-invasive EEG-based Brain-Computer Interfaces (BCIs)
measure brain activity using multiple electrodes attached to the scalp
and attempt to decode the underlying patterns into machine under-
standable commands. Calculating the power within different fre-
quency bands of EEG data is one of the standard approaches for
feature extraction within the pattern recognition pipelines of BCIs.
However, such power spectral density (PSD) based features do not
explicitly take connectivity patterns into account. To incorporate
connectivity information into the feature extraction of BCIs we pro-
pose to integrate connectivity estimates based on direct directed
transfer functions as a linear filter at feature-level. Connectivity es-
timates between different activity sources are used as an importance
reweighting and feature selection mechanism for PSD features. The
idea of the proposed feature-level connectivity filtering is that esti-
mates of connectivity between activity sources may help to model
the flow of information that is relevant for the particular task more
precisely and may therefore improve BCI performance.

Instead of using the raw EEG, we derive GC based connectiv-
ity measures from multivariate autoregressive (MVAR) models that
are calculated from independent sources of the EEG using Inde-
pendent Component Analysis (ICA). Calculating connectivity mea-
sures in the source space avoids spurious connectivity estimates that
occur due to volume conduction effects [4, 5]. In our approach,
feature-level filters based on the connectivity information are cal-
culated from the training trials only and applied to the features for
single-trial prediction of the test data. Therefore, connectivity esti-
mates can be robustly calculated on a sufficient amount of data and
feature-level filtering can be applied during the application of the
BCI system by a simple linear transform.

1.1. Related Work

The idea to include connectivity patterns into feature extraction
methods for BCIs has recently been addressed by a few studies:

In [6], the authors evaluated features derived from the directed
transfer function (DFT) connectivity measure for motor imagery
BCIs and compared them with power spectral density (PSD) and
phase locking value based features. They could show significant
improvements in classification accuracy for combined feature sets
including DFT features and the conventional features over the con-
ventional features alone. In [7], a nonlinear Granger Causality (GC)
measure of functional connectivity was applied to a BCI for decod-
ing different intended arm reaching movements (left, right and for-
ward). The directional flow measure was based on nonlinear predic-
tive models using radial basis functions. A threshold was set through
a spatial statistical process so that the top 20% of pathways ranked
according to their GC values are considered. The results of the study
showed that directional flow patterns are distinct with respect to the
intended arm movement direction. In [8], the authors considered the
dynamics of communication between activity sources in the brain
during cognitive processing as a control feature for BCIs. The sub-
jects in this experiment were asked to perform or imagine finger taps.
Phase synchronization was used to map inter-channel relationships.
Hidden Markov models were applied to describe the dynamics of the
resulting complex networks. The results show that functional con-
nectivity dynamics can offer additional information to improve BCI
classification accuracies. In [9], the authors proposed feature ex-
traction incorporating source analysis and brain network dynamics.
The data set 2 from BCI Competition IV was used as a testing set.
The authors developed a Bayesian spatiotemporal model for source-
localized EEG and then modeled a dynamic causality brain network.
A classification accuracy of 91.25% was reached. The results show
that the source analysis and brain network dynamics methods can
improve BCI performance and are suitable for use in practical appli-
cations. In [10], the authors used different connectivity measures as
features for a motor imagery BCI. They applied Independent Com-
ponents Analysis (ICA) to the EEG data and estimated connectiv-
ity measures using multivariate autoregressive models. In their ex-
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periments, they could show that features based on effective connec-
tivity estimated from single-trial data allow a reliable classification
and that their performance is similar to using traditional band-power
features. The EEGLAB-compatible toolbox SIFT [11, 12] provides
a variety of techniques to analyze source connectivity dynamics of
electrophysiological brain activity. It provides methods to calculate
different GC based connectivity measures using multivariate autore-
gressive (MVAR) models.The toolbox contains functions to estimate
and validate MVAR models using statistical analyzes, provides a
graphical user interface and visualization of the estimated connec-
tivity. The SIFT implementations for model fitting, validation and
connectivity estimation were used for the evaluation in this paper.

This work aims to explore the applicability of effective brain
connectivity patterns as a filter mechanism during the feature extrac-
tion of BCIs. In comparison to previous work, we do not use the
estimated connectivity measures as features for a BCI directly, but
apply them as filters to standard PSD based features. In the evalu-
ation of two different data sets (two-back and motor imagery), we
show that our approach can significantly improve BCI performance.
Although connectivity estimates have been used in BCIs before, to
the best of our knowledge, they have never been applied as a feature-
level filtering mechanism.

2. CONNECTIVITY ESTIMATION

2.1. Granger Causality and Autoregressive Models

When determining paths of information flow within the brain (effec-
tive connectivity), Granger Causality (GC) is one of the most pop-
ular and important tools. It was introduced by Clive Granger [13]
and originally applied to financial data analyzes. A time series X
Granger-causes another time series Y, if it can be shown that the val-
ues of X provide statistically significant information about future val-
ues of Y. GC has become a widely used technique in neuroscientific
research, where it has often been used to assess causal connectivity
relations in brain activity, for example [14, 15, 16].

GC can be calculated using autoregressive modeling. The basic
GC is only applicable to bivariate time series. In multivariable situ-
ations the connections between time series can be direct or indirect.
Repeated bivariate analysis can lead to the conclusion that one time
series is causal to another time series, when in fact both were influ-
enced by a third one but with different time delays. This problem was
addressed by Geweke, who introduced conditional GC [17]. Com-
pared to pairwise GC that is based on bivariate autoregressive mod-
els, conditional GC is based on multivariate autoregressive (MVAR)
models, which are suitable to express dependencies between the in-
dividual signals considering all channels together.

Given V = {1,2, ...,d} time series (e.g. activity from d relevant
sources in the brain) and model order p, a prediction of the vector
xt by the MVAR model is the linear combination of the p previous
values

x(V )
t =

p

∑
k=1

Akx(V )
t−k +ut , (1)

where x(V )
t =[xt (1), xt (2), ..., xt (d)] is the t-th sample of the time series

and Ak is a d-by-d matrix of the MVAR model coefficients (weights)
at time lag k and ut=[ut (1), ut (2), ..., ut (d)] is the zero-mean residual.

2.2. MVAR model based connectivity measures

Based on equation (1), we can assess GC based connectivity mea-
sures in the frequency domain. If we transform the MVAR model to
the z-domain, we obtain

X( f ) = A( f )−1U( f ). (2)

with a transfer function of the system H( f ) = A−1( f ). The spectral
density S( f ) is given by

S( f ) = H( f )ΣH∗( f ). (3)

H∗( f ) is the transposed complex conjugate of H( f ) and Σ is the
covariance matrix of the noise U( f ).

Given the quantities A( f ), H( f ), S( f ) and Σ multiple connectiv-
ity measures can be calculated [18]. The most traditional approach
for detecting cooperative neuronal activity in electrophysiological
signals is coherence, which describes the linear relationship in the
frequency domain between channels [19]. The ordinary coherence
with frequency f is defined as

Ci j( f ) =
|Si j( f )|

2
√

Sii( f )S j j( f )
, (4)

where the values Si j( f ) represent the cross-spectrum between chan-
nels i and j at frequency f (autospectra for i=j).

When using non-invasive EEG measurements, volume conduc-
tion effects can not be avoided. Partialing out the influence of other
channels is an option to mitigate volume conduction effects [20].
The partial coherence (pCOH) between i and j represents the residual
coherence, where the common combinations to any other channels
are removed [21]:

pCOHi j( f ) =
S−1

i j ( f )

2
√

S−1
ii ( f )S−1

j j ( f )
. (5)

A connectivity measure that reveals direct and indirect direc-
tional connections is the directed transfer function (DTF) [3]:

DT Fi j( f ) =
Hi j( f )

2
√

∑
n
k=1 |Hik( f )|2

. (6)

One extension of DTF is the full frequency directed transfer function
(ffDTF), in which the summation over the whole frequency range
removes the dependence of the denominator on frequency [22]:

f f DT Fi j( f ) =
|Hi j( f )|2

∑ f ∑
n
k=1 |Hik( f )|2

. (7)

Another extension of DTF is dDTF, which describes only direct con-
nections. It results from multiplying pCOHi j( f ), as defined in equa-
tion (5), by f f DT Fi j( f ), as defined in equation (7):

dDT Fi j( f ) = pCOHi j( f ) · f f DT Fi j( f ). (8)

We decided to use the direct Directed Transfer Function (dDTF)
as connectivity measure for the evaluations in this paper, as prelim-
inary tests showed that extensions of DTF had consistently superior
performance than multiple other connectivity measures when used
within the feature extraction of BCIs. This is also supported by the
findings of Billinger and collaborators [10].

3. DATA CORPORA

Two publicly available data sets have been used to evaluate the pro-
posed method for connectivity based feature-level filtering:

1. 2BACK: This data set is provided by the Swartz Center for
Computational Neuroscience1 along with the sample material
of the SIFT Toolbox [11]. It consists of EEG data of one sub-
ject performing a n-back task with feedback (n=2), where a

1http://sccn.ucsd.edu/wiki/SIFT
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Fig. 1. Topographical scalp maps of the eight selected ICA components for the 2BACK data set.

continuous stream of letters, separated by ∼1500 ms, is pre-
sented. The subject is instructed to press a button with the
right thumb if the current letter matches the one presented
twice earlier in the sequence and press with the left thumb if
the letter is not a match [18]. Correct and erroneous responses
are indicated by two different kinds of auditory feedback. The
data consists of 123 correct and 123 error trials. EEG data
was recorded using 64 channels at a sampling rate of 256 Hz.
In the evaluations in section 5, we will discriminate trials with
correct responses from trials with incorrect responses.

2. BCI3IVa: This data set is provided by the Berlin BCI group
and is available as data set IVa from the BCI Competition 3
website2. It contains EEG data recorded from 5 subjects per-
forming motor imagery of 2 different classes: right hand,
right foot [23]. A particular challenge of this competition
is that for some subjects only few training data is available.
The data has been recorded using 118 EEG channels and was
downsampled to 100 Hz. In the evaluations in section 5, we
discriminate the different classes of motor imagery and apply
same conditions as in the competition.

4. SIGNAL PROCESSING AND FEATURE EXTRACTION

The following section describes the signal processing and feature
extraction pipeline used for the evaluation of the two data sets. Fig. 2
gives an overview of the processing steps involved.

4.1. Pre-processing of the data

The two data sets described in section 3 were bandpass filtered to
broadly cover the relevant EEG activity. The 2BACK data set was
filtered between 2 Hz and 50 Hz, BCI3IVa between 8 Hz and 30
Hz. An Extended Infomax Independent Component Analysis (ICA)
[12] was calculated to transform the signals into sources space. ICA
components were selected in order to remove artifacts and irrelevant
brain activity, but also to reduce the dimensionality of the MVAR
models. For 2BACK, 8 ICA components were selected that are
suggested in [18] based on neurophysiological expert knowledge.
Fig. 1 shows the corresponding 2D topographical scalp maps of the
selected components. For BCI3IVa the ADJUST toolbox [24] was
used to identify ICA components automatically that are artifact free.
Between d = 79 and d = 116 of the 118 components were selected
for the different subjects.

4.2. MVAR model fitting and validation

For analyzing multivariate causality and information flow between
sources of EEG activity we estimated multivariate autoregressive
(MVAR) models using the Vieira-Morf algorithm [25] on the train-
ing trials data. The suitability of the fitted model has to be proven
using statistical testing for model consistency and stability. There-
fore, we applied the percent consistency tests [26] that calculate the

2http://www.bbci.de/competition/iii/

Fig. 2. Processing steps for signal processing and feature extraction
including feature-level connectivity filtering.

amount of correlation structure of the original data that is mapped
by the autoregressive model. In addition to that, stability tests en-
sure the stationarity of the model, i.e. to ensure that the model will
not diverge to infinity [18]. Stable MVAR models with high percent
consistency around 95% were built upon 2BACK using a model or-
der of p = 15. For BCI3IVa, the validation tests confirmed the sta-
bility of the MVAR models for each subject and indicated percent
consistencies of 62.4% on average using model order p = 20.

4.3. Feature-level connectivity filtering

Using the fitted autoregressive models (see 4.2), Granger Causality
based connectivity measures between the activity sources can be es-
timated. For the proposed approach we calculated direct Directed
Transfer Fuction (dDTF) according to equation (8). For each fre-
quency band f the dDTF based connectivity estimate between ICA
sources i and j can be represented in a matrix K with elements
dDT Fi j( f ). To emphasize the influence of features that are involved
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in strong connectivity links, all but the k largest elements in K were
set to zero and the values were multiplied with quadratically decreas-
ing weighting coefficients.

For each trail t, power spectral density (PSD) feature vectors
pt with elements p j

t ( f ) were extracted using Welch’s method [27]
(activity sources j ∈ {1, . . . ,d}). A logarithm was applied to pt to
make the features approximately Gaussian.

Feature-level connectifity filtering was performed by the matrix-
vector product of the connectivity matrix K and the features pt:

p̂t( f ) = K ·pt =
d

∑
j=1

dDT Fn j( f ) · p j
t ( f ). (9)

Hence, the n-th coefficient of the resulting vector p̂t( f ) can be in-
terpreted as the weighted sum of the information flowing to activity
source n from the other sources

4.4. Dimensionality reduction

EEG-based BCIs often use the power in different frequency bands
as features. Besides the classical frequency bands, such as δ,θ,α,β,
smaller (usually 2-4 Hz wide) consecutive frequency bands are typ-
ically chosen, which can precisely model the relevant EEG rhythms
and can be estimated robustly from few seconds of EEG data. To
represent frequency bands in the feature vectors, we merged coeffi-
cients in p̂t( f ) that correspond to adjacent frequencies by averaging.

To further reduce the dimensionality of the feature space, fea-
ture selection based on mutual information was performed (c.f. [28]).
We selected the l features that contained most information with the
ground truth class distribution in the training data. For this purpose,
we calculated the mutual information between the continuous train-
ing features and the corresponding discrete class labels estimated by
kernel density estimation. The number of features l was selected
to include more than 50% of the total mutual information between
the features and the class labels. For 2BACK, l = 30 features were
chosen. For all subjects of BCI3IVa, l = 7 features were chosen.

5. EVALUATION AND RESULTS

To evaluate the proposed feature-level filtering approach, we evalu-
ated the two data sets using a Naı̈ve-Bayes classifier based on kernel
density estimation (Parzen windows). The classifier and the relevant
parameters were estimated on the training data and evaluated on the
test data as indicated by Fig. 2.

5.1. 2BACK data set
A 10x10-fold cross-validation (repeated pseudo-random sampling)
was performed to estimate the classification rates for 2BACK. The
results of the proposed feature extraction method were compared
with PSD based features without feature-level connectivity filtering
as baseline. Fig. 3 shows the classification accuracies for both ap-
proaches. The error bars indicate average standard deviations across
the 10 cross-validation folds. The average recognition accuracy us-
ing connectivity based feature-level filtering was 64.8%, which com-
pares to 59.7% for the baseline performance without filtering (oth-
erwise identical processing and parameters). A paired t-test on the
10 cross-validation runs shows that incorporating connectivity es-
timates as feature-level filters results in significantly better perfor-
mance (p<0.0001, t=4.21, df=99).

5.2. BCI3IVa data set

For the evaluation of BCI3IVa training and testing was performed
comparable to BCI Competition III [23]. Please note that our aim

Fig. 3. Comparison of the classification accuracies of 2BACK for
features using connectivity based feature-level filtering (dDTF) and
power spectral density based features (PSD).

here was not to tune the system towards maximum performance in
the competition, but to compare the proposed method with a generic
BCI pipeline that is applicable to many BCI problems and to eval-
uate it on a publicly available data set. The results of the proposed
feature-level filtering approach are presented in Fig. 4. The aver-
age recognition rate over the five subjects was 79.5%. The baseline
performance for PSD based features without feature-level connec-
tivity filtering was 73.7%. Comparing the classification rates of the
proposed feature-level filtering with the corresponding ones based
only on PSD based features (otherwise identical processing and pa-
rameters) shows significantly higher performance for the proposed
approach (paired t-test, p<0.05, t=2.97, df=4). The results of both
approaches are shown as confusion matrices in Table 1.

Fig. 4. Comparison of the classification accuracies of the 5 subject in
BCI3IVa for features using connectivity based feature-level filtering
(dDTF) and power spectral density based features (PSD).

dDTF actual PSD actual

pr
ed

ic
te

d Foot Hand Foot Hand
Foot 85.4% 14.6% 73.4% 26.6%
Hand 34.4% 65.6% 36.0% 64.0%

Table 1. Confusion matrices of the BCI3IVa data set using dDTF
based feature-level connectivity filtering (left) and baseline power
spectral density based features (right) averaged over all subjects.

6. CONCLUSION

In this paper, we proposed a feature extraction method for BCI appli-
cations combining connectivity measures based on dDTF as feature-
level filters for power spectral density features. The approach was
evaluated using data sets of two different publicly available experi-
ments: a two-back task and a two-class motor imagery task. For both
data sets, the new approach strongly improved classification rates
over the baseline, which shows that dDTF based connectivity mea-
sures can successfully be used to select and reweight band-power
features for BCIs.

2086



7. REFERENCES

[1] Olaf Sporns, “The human connectome: a complex network,”
Annals of the New York Academy of Sciences, vol. 1224, no. 1,
pp. 109–125, 2011.
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