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ABSTRACT 
 
Due to the low signal-to-noise ratio of 
electroencephalographic (EEG) recordings, the quality of 
the electrode-scalp contact is an important factor in EEG-
based brain-computer interfaces (BCIs).  For this reason, the 
impedance between each individual electrode and the scalp 
is measured prior to each EEG recording session. In order to 
obtain high quality EEG signals and accurate performance, 
the impedance has to be low (below 5K Ohms). Typically, 
researchers have reduced the electrode-scalp impedance by 
performing time-consuming electrode adjustments prior to 
the data acquisition stage. In this paper, we utilize the 
electrode-scalp impedance information to remove the EEG 
artifacts caused by high impedance electrodes in order to 
enhance the signal quality during the signal processing 
stage. Our proposed method is based on the independent 
component analysis (ICA) algorithm, which is used to 
decompose the EEG signals into independent components. 
The electrode-scalp impedance is employed to automatically 
distinguish irrelevant components from event-related 
components. The experimental results show that our method 
can effectively remove artifacts and enhance the BCI 
performance compared to the scenario where no artifacts 
were removed, and the scenario in which irrelevant 
independent components were removed manually based on 
prior knowledge.  
 

Index Terms— EEG, ICA, Electrode-scalp impedance 
 

1. INTRODUCTION 
 
Event-related potentials (ERPs) are voltage fluctuations, 
recorded at the scalp, that are evoked by a physical or 
mental action in human brain. These scalp potentials are 
extracted and averaged over several time-locked 
Electroencephalographic (EEG) signals. However, the 
amplitude of the EEG signals is generally less than 100 μV 
and the signal-to-noise ratio is very low, making them very 
sensitive to noise. The impedance between the recording 
electrodes and the subject’s scalp is one of the significant 
sources of noise in the EEG signals [1]. High electrode-
scalp impedance can lead to distortions that are difficult to 
separate from the actual EEG signal. Therefore in many 
existing EEG systems, electrode-scalp impedance is 
measured prior to data acquisition. In order to prevent signal 
distortions, the impedance at each electrode in contact with 

the scalp should be below 5K Ohms [2]. When the 
impedance is above 5K Ohms, it is an indication that there is 
poor connectivity between the electrode and the scalp. 
Currently, researchers reduce the impedance of the 
electrodes by injecting more gel in wet-electrode systems, 
for instance, or providing more pressure and adjusting the 
location of the electrodes in dry-contact systems. These 
adjustments are typically made prior to (or during) the data 
acquisition stage, and can be very time-consuming. The goal 
of our study is to investigate if the noise caused by high 
impedance can be removed from the EEG signals without 
the time-consuming adjustments.  
      Previous studies [3, 4] have demonstrated a correlation 
between the electrode-scalp impedance and EEG signal 
quality.  In [3], Ferree et al. showed that lower impedance 
between the electrodes and the scalp improves the quality of 
EEG signals and mitigates the noise. In another study, 
Kappenman et al. showed that the electrode-scalp 
impedance measure enables the characterization of the ERP 
signal quality. They found that the low-frequency noise in 
the ERP signal increases at electrodes with a higher 
impedance compared to those with low impedance [4]. 
Inspired by the aforementioned works, our study is focused 
on leveraging the impedance information to remove the 
noisy signals in the signal enhancement stage without 
considering the time-consuming adjustments prior to data 
acquisition.  
      Signal enhancement is a crucial step in EEG signal 
processing because EEG signals are always contaminated by 
artifacts such as, eye movements, eye blinks, and muscle 
movement. During the past 30 years, researchers have 
proposed several methods to remove these artifacts. In the 
earlier works, regression methods were implemented for 
artifact removal in the time domain [5] or frequency domain 
[6]. However the performance of the regression methods 
depended on having a good regressing channel (e.g., 
Electrooculography (EOG) channel). Principal component 
analysis (PCA) was also employed to remove the artifacts 
from multichannel EEG [7]. However, PCA may not 
effectively separate artifacts from the brain signals, 
especially when they have comparable amplitudes [8]. More 
recently, independent component analysis (ICA) has been 
shown as one of the most effective methods for artifact 
removal [9] [10].   The existing versions of the ICA method 
decompose the raw EEG signals into several independent 
components and require the user to select the event-related 
components. The selection process can be done manually 
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