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ABSTRACT 

 

Brain Computer Interfaces (BCI) can provide severely 

impaired users with alternative communication paths, by 

means of interpretation of the user’s brain activity. Among 

BCI operating paradigms, SSVEP is largely exploited for its 

potentially high throughput and reliability. In this paper, two 

novel SSVEP processing algorithms are presented, focused 

on calibration-free operation and computational efficiency, 

targeted for development of BCI embedded modules. A 

comparison with other popular SSVEP signal processing 

algorithm (MEC, AMCC, CCA) is also made; results 

demonstrate the feasibility and effectiveness of the proposed 

solutions. 

 

Index Terms— Brain Computer Interface (BCI), 

SSVEP, MEC, AMCC, CCA. 

 

1. INTRODUCTION 

 

Brain Computer Interfaces (BCI) [1] are alternative, 

augmentative communication means that aim at providing 

the user (for instance lacking voluntary muscle control) with 

an interaction path, based on the interpretation of her/his 

brain activity. Currently, ElectroEncephaloGraphy (EEG) is 

the most widespread, non-invasive technique for extracting 

information on brain activity, due to its good overall tradeoff 

between temporal resolution and spatial resolution, as well as 

to its relatively lower costs. 

Focusing on EEG-based BCI, several paradigms are 

commonly exploited for regulating their operation. Among 

them: Slow Cortical Potentials (SCP) [2], Event Related 

De/Synchronization (ERD/S) [3], P300 [4]-[5], Steady State 

Visual Evoked Potentials (SSVEP) [6]-[9]. The latter 

paradigm, in particular, exploits the natural brain response to 

a continuous, repetitive visual stimulus, such as a blinking 

LED: in the 4-50 Hz frequency range, the flashing frequency 

reflects on the onset of an isofrequency component in the 

brain power spectrum. By simultaneously presenting multiple 

visual stimuli, each one operating at a different frequency, 

the user’s brain response can be analyzed to infer to which 

stimulus he was aiming.  

The SSVEP paradigm is largely exploited in applications 

where Information Transfer Rate (ITR, defined in [1]) 

maximization is of primary concern, e.g. in spellers. 

Nonetheless, SSVEP responses are regarded as reliable 

features [6] for BCIs, given their inherent higher SNR 

(Signal to Noise Ratio). Finally, even if SSVEP-based BCIs 

usually require some residual ocular motor ability, recent 

studies on independent, covert attention based BCI are being 

carried out [8]. 

In [9] we presented the development of a platform 

(encompassing both hardware and software design aspects) 

conceived for prototyping of BCI embedded systems, 

specifically targeted to - even if not limited to - Ambient 

Assisted Living (AAL) control purposes. The platform is 

composed of three main units: i) an Analog Front End (AFE) 

for the acquisition of the EEG signal, ii) a digital signal 

processing unit, implementing feature extraction and 

classification and, iii), an output/feedback unit for display 

and implementation of active controls. We started from 

developing and testing a novel hardware AFE unit, aiming at 

a compact and inexpensive circuit. To this regard, also the 

electrode technology choice (standard, passive Ag/AgCl wet 

contacts) and the electrode count (up to 6 EEG channels) 

were optimized, looking for costs reduction and user’s 

comfort. Signal processing and feedback units are currently 

implemented on a PC architecture, allowing for more flexible 

testing and for better tuning performance. Nevertheless, the 

algorithms are specifically targeted for implementation on 

compact, portable devices, paying attention to devising 

computationally-efficient methods.  

In particular, our approach aims at developing tools and 

methods for low-cost, standalone embedded BCI modules, 

making high-performance acquisition hardware or large 

computing powers unnecessary. 

Following these premises, we present here two SSVEP 

signal processing algorithms we have designed and tested: 

both are fully calibration-free and suitable for low-resource 

computing platform. The first algorithm attempts to 

maximize accuracy, while the second one follows a 

complementary approach, aimed at improving the ITR. To 

validate the proposed approaches, comparison of such 

methods with other common signal-processing techniques 

frequently encountered in BCI applications is carried out. 
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The paper is organized as follows: in section 2 some 

popular SSVEP signal processing methods are reviewed, 

while section 3 introduces the novel algorithms proposed. In 

section 4, accuracy, ITR and computational efforts of the 

aforementioned methods are compared. Finally, conclusions 

are drawn in section 5. 

 

2. SSVEP SIGNAL PROCESSING METHODS 

 

Many signal processing methods are commonly exploited in 

SSVEP-based BCI. A full review goes beyond the scope of 

this paper; the interested reader can refer, for example, to 

[10]. Here we shall limit ourselves to discuss three popular 

methods: Minimum Energy Combination (MEC) [7], 

Average Maximum Contrast Combination (AMCC) [11], 

Canonical Correlation Analysis (CCA) [12]. In general, the 

objective is to find a spatial filter w (i.e., a linear combination 

of the input channels) or a set of spatial filters, with the aim 

of increasing the accuracy of the classification process.  

Minimum Energy Combination attempts to find an 

optimal spatial filter from minimizing an estimate of the 

noise. In particular, the voltage time series of a single 

electrode yi(t), can be modeled as: 
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where the first term is the model of a SSVEP response 

corresponding to a stimulus frequency f (considering up to 

Nh harmonics), and Ei(t) is a noise and nuisance signal. Given 

an EEG epoch of Nt samples, the input signals from the Ny 

electrodes can be represented as a matrix Y of size Nt × Ny, 

whose columns are the potential readings from each 

electrode site. In the same way we can represent the SSVEP 

term in eq. (1) as a multiplication between a SSVEP 

information matrix X having size Nt × 2Nh and containing Nh 

(sin, cos) column pairs, and a weight matrix G of size 

2Nh × Ny, containing all the ai,k, bi,k coefficients. Eq. (1) then 

becomes: 
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To extract discriminant information, signals from the 

electrodes are combined with appropriate weight vectors w 

[w1, … ,wNy ]
T
. New channel vectors s of length Nt are then 

obtained as: 
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which generalizes to Ns channels as follows: 
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where S=[s1, … ,sNs] represents the set of channels and 

W=[w1, … , wNs] is the corresponding weight matrix. Then, 

MEC proceeds as follows: at first, an orthogonal projection 

is used to remove any potential SSVEP activity from the 

recorded signal: 
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Ỹ then approximately contains only noise, artifacts and 

background brain activity. An optimal set of Ns weight 

vectors ŵ must be then chosen such that the energy of the 

signal Ỹ is minimized: 
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As shown in [7], the optimal solution is the eigenvector 

v1 that corresponds to the smallest eigenvalue λ1 of the 

matrix [Ỹ
T
Ỹ]. The weight matrix is then composed using the 

eigenvectors, corresponding to the Ns smallest eigenvalues, 

sorted in ascending order: 
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Ns is selected by finding the smallest number k which 

makes the sum of the k smallest eigenvalues greater than 

10% of the sum of all the eigenvalues. This can be 

interpreted as selecting the number of channels in such a way 

as to discard as close to 90% of the nuisance signal energy as 

possible. 

Finally, features are extracted according to the following 

equation: 
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The process described so far is repeated for each 

stimulus frequency f, and a classifier picks the attended 

stimulus frequency. 

Average Maximum Contrast Combination is similar to 

MEC up until eq. (5). It then attempts to maximize the SNR 

by optimizing the following equation:  
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where CY and CỸ are the covariance matrices of signals 

Y and Ỹ, respectively. Again, minimization of the generalized 

Rayleigh quotient in (9) yields optimal weight vectors which 

can be used to construct the weight matrix W accordingly. 

Canonical Correlation Analysis is generally used for 

finding the correlations between two sets of multi-

dimensional variables. It seeks a pair of linear combinations, 

called canonical variables, for two sets, such that the 

correlation between the two canonical variables is 

maximized. Then it finds a second pair, uncorrelated with the 

first one, that has the second highest correlation. The process 

continues until the number of pairs of canonical variables 

equals the number of variables in the smallest set. 

CCA can be applied to SSVEP detection by attempting 

to maximize the correlation between the input signals Y and 
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the SSVEP information matrix X, for each stimulus 

frequency. As features, the maximum CCA scores are used 

for classification. 

 

3. PROPOSED SSVEP PROCESSING ALGORITHMS 

 

In this section, two novel algorithms are presented, both 

featuring low computational demand and thus suitable for 

low-cost embedded implementation. Algorithm 1, 

introduced in [9], attempts to maximize accuracy: it is based 

on Power Spectral Density (PSD) analysis and aims at 

improving classification accuracy by ad hoc optimization of 

the feature extraction. At first, acquired data is digitally low-

pass filtered (fcut=40 Hz) for out-of-band noise reduction. 

Optionally, further pre-processing steps may include spatial 

filtering, such as a re-referencing of electrodes according to 

Common Average Reference (CAR) filter topology, or the 

creation of bipolar leads. PSD are estimated by Welch’s 

method: the window length can be tuned for different speed 

vs. accuracy tradeoffs, as shown in Table 1. The channel 

powers are equalized over a given pre-determined band of 

interest. Normalization is shown to slightly improve the 

classification performance, especially in case of a strong 

inter-channel imbalance, due to, for example, different 

electrode impedance; it improves the classification 

robustness by somehow self-adapting to such variable 

scenarios.  

The algorithm then exploits the a priori knowledge of 

the actual set of stimulation frequencies, checking the 

conditions only on such a set: the channel powers are 

summed for each target frequency. Candidate targets are 

selected whenever a given fraction (e.g., at least 50%) of the 

channels exhibit a local maximum in the PSD at the target 

frequency. If at least one candidate target exists, the sum of 

such powers are compared and the most probable frequency 

is picked, if larger enough (i.e., exceeding a given probability 

threshold). If no candidate targets were found in the previous 

step, comparison is made between the sum of powers at each 

frequency and classification is performed in the same way, 

accounting for a higher threshold. 

Since the algorithm involves only relative comparisons, 

it virtually requires no calibration at all. Fine tuning of the 

algorithm is still possible by adjusting the classifier’s 

parameters, such as the fraction of channels required to pick 

a candidate frequency or the relative threshold used by the 

classifier. Moreover, signal processing just involves 

operations well suitable for implementation on embedded 

devices, allowing to take full advantage of specialized digital 

signal processing hardware.  

Algorithm 2 still retains calibration-free operation and 

computational efficiency, but privileges ITR maximization 

rather than accuracy, somehow complementing the previous 

approach.  

Similarly to MEC and AMCC methods, a SSVEP 

information matrix X of size Nt × 2Nh is built for each 

stimulus frequency: 
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Suitable filtering is applied to remove low frequency and 

out-of-band contributions. Then, input channels are 

normalized in order to have the same variance. Projection on 

the space spanned by the sinusoidal components of X is 

performed to remove any potential SSVEP activity from the 

recorded signal, as in eq. (5). The difference in variance 

before and after each projection, summed along all channels, 

are taken as features. Such simplified feature extraction 

procedure involves less steps than previously mentioned 

methods, and thus better suits implementation on small 

embedded devices. As far as classification is concerned, the 

matrix X which induces the larger decrease in the overall 

variance is assumed as the stimulus frequency. As in the 

previous algorithm, relative comparisons are exploited, thus 

avoiding calibration needs.  

 

4. COMPARISON OF SSVEP ALGORITHMS 

 

In order to assess the performance of the proposed 

algorithms, and to compare them with other signal 

processing methods, a 4 class SSVEP experiment was set up. 

Four healthy volunteers (age 22-27, with normal or 

corrected to normal vision) were asked to stare at one of the 

four simultaneous flickering LED while resting on an 

armchair at approximately 1 m from the visual stimulus. Each 

trial lasted for 6 seconds, and each LED presented a different 

stimulation frequency (16, 18, 20, 22 Hz); EEG was 

acquired at 250 SPS (Samples Per Seconds) with our custom 

hardware unit [9] from 6 scalp locations (namely O1, O2, 

P3, P4, P5, P6), using standard 10 mm Ag/AgCl disk 

electrodes with conductive paste. All algorithms were tested 

on the same EEG samples.  

First, performances of Algorithm 1 are considered, 

shown in Table 1 (a): to account for reliable PSD estimation, 

relatively longer epochs were needed, this of course 

reflecting on poor ITR; nevertheless, accuracy is fairly better 

than reference methods, even at comparable ITR. Such 

figures are particularly relevant when looking at 

environmental control application: in such a situation, 

indeed, we aim at minimizing the user effort for a given 

operation, which is supposed to be performed not too 

frequently. Hence, we focused on accuracy instead of speed. 

Table 1 (b) shows, instead, the comparison between 

MEC, AMCC, CCA and our Algorithm 2. In this case, more 

emphasis is placed on ITR, and a shorter EEG window 

length is adopted for all methods. With the adopted 1.5 s 
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window length, a maximum theoretical ITR of 80 bit/min can 

be achieved [1].  

Results show that our Algorithm 2, despite its simplified 

approach, performs close to, or better than, MEC and 

AMCC methods.  

It is worth noting, though, that Algorithm 2 was 

explicitly designed for low-electrode count setups, and does 

not perform any dimensionality reduction as MEC or AMCC 

do. However, in our scenario, where the number of 

electrodes is intentionally low for cost and comfort 

constraints, computational demand is significantly lower, as 

shown below. Mean ITR reported in [7], referring to MEC 

processing, is also comparable to our results, by taking into 

account the difference in the number of stimuli (5 vs. 4 from 

our case). 

On the other hand, CCA has better accuracy and ITR 

than our method; in this case too, dimensionality reduction is 

also not taken into account in this method, and all the EEG 

channels are considered. Still, CCA is more computationally 

intensive than our algorithm: despite a thorough analysis of 

computational efforts goes beyond the scope of this paper, 

some account of computational performance is given in 

Table 2, which compares mean execution times of cited 

algorithms. Average execution times of the algorithms, on 

the same platform (desktop PC, Intel
®
 Core™ i5 

@ 3.20 GHz, 8 GB RAM) were extracted: meaningful 

performance improvement were estimated over all reference 

algorithms, with more marked advantages over MEC and 

AMCC.  

This simple test, although preliminary and non-

exhaustive, highlights the computational efficiency of the 

proposed simplified approach. Additionally, the algorithm 

nature is inherently more keen on firmware implementation, 

perspectively allowing to take full advantage of specialized 

digital signal processing hardware, in the framework of 

aimed embedded solutions. 

 

5. CONCLUSIONS 

 

Two novel SSVEP signal processing algorithms were 

proposed and compared to most popular methods (MEC, 

AMCC, CCA). The algorithms were explicitly conceived to 

provide lightweight, calibration-less methods for SSVEP 

signal processing in embedded systems-oriented 

environments, where resource limitation and cost constraints 

are tighter. Preliminary tests, carried out within a Matlab 

environment, showed that, in a scenario employing few EEG 

channels, these methods can attain a fair performance, only 

requiring a fraction of the computational demand of 

reference literature methods.  

Future work includes the implementation of the 

presented methods into embedded platforms, to provide a 

self-contained, autonomous BCI device. Moreover, the two 

presented approaches can be fused together, trading off at 

run time between accuracy and ITR: for example by using 

the faster algorithm as default, and resorting to the more 

accurate one just if and when the estimated error rate is too 

high. 

 

6. REFERENCES 

 
[1] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, 

T.M. Vaughan, "Brain-computer interfaces for communication and 

control," in Clin. Neurophysiol. vol.113, no.6,. pp.767-91, Jan. 

2002. 

 

[2] T. Hinterberger, S. Schmidt, N. Neumann, J. Mellinger, B. 

Blankertz, G. Curio, N. Birbaumer, "Brain-computer 

communication and slow cortical potentials," in IEEE Trans. 

Biomed. Eng., vol.51, no.6, pp.1011-1018, Jun. 2004. 

 

[3] G. Pfurtscheller, C. Brunner, A. Schlögl, and F. H. Lopes da 

Silva, "Mu rhythm (de) synchronization and EEG single-trial 

classification of different motor imagery tasks," in NeuroImage 

vol.31, no.1, pp.153-159, May 2006. 

 

Table 1  Comparison of different SSVEP algorithms in terms of accuracy and  Information Transfer Rate [bit/min] (lower row, in brackets). 

In (a), the full 6 s EEG epoch is used for Algorithm 1; in (b), a 1.5 s EEG window is used for all mentioned algorithms. 

(a)        (b) 

Subj. 3 s 4 s 5 s 6 s  Subj. MEC AMCC CCA Alg. 2 

1 
90.0% 

(27.45) 

83.3% 

(16.27) 

86.7% 

(14.66) 

90.0% 

(13.73) 
 1 

62.5% 

(18.05) 

85.0% 

(46.10) 

87.5% 

(50.33) 

87.5% 

(50.33) 

2 
91.7% 

(29.08) 

91.7% 

(21.81) 

100% 

(24.00) 

100% 

(20.00) 
 2 

94.1% 

(63.32) 

94.1% 

(63.32) 

94.1% 

(63.32) 

91.2% 

(57.23) 

3 
87.5% 

(25.17) 

95.0% 

(24.52) 

92.5% 

(17.96) 

97.5% 

(17.92) 
 3 

70.0% 

(25.73) 

86.7% 

(48.94) 

90.0% 

(54.90) 

86.7% 

(48.94) 

4 
94.1% 

(31.68) 

94.1% 

(23.76) 

94.1% 

(19.01) 

91.2% 

(14.31) 
 4 

72.5% 

(28.62) 

77.5% 

(34.97) 

82.5% 

(42.14) 

80.0% 

(38.44) 

Avg. 
90.8% 

(28.35) 

91.0% 

(21.59) 

93.3% 

(18.91) 

94.7% 

(16.49) 
 Avg. 

74.8% 

(33.93) 

85.8% 

(48.33) 

88.5% 

(52.67) 

86.4% 

(48.74) 
 

Table 2  Comparison of mean execution time between the 

algorithms reported in Table 1 (b). 

 MEC AMCC CCA Algorithm 2 

Mean time 9.65 ms 5.25 ms 1.13 ms 0.82 ms 

Time reduction 
(proposed vs. others) 

-91.5 % -84.4 % -27.4 % – 

 

2066



[4] M. Salvaris, C. Cinel, L. Citi, and R. Poli, “Novel protocols for 

P300-based brain-computer interfaces,” in IEEE Trans. Neural 

Syst. Rehabil. Eng., vol.20, pp.8-17, Jan. 2012. 

 

[5] R. Carabalona, F. Grossi, A. Tessadri, P. Castiglioni, A. 

Caracciolo, I. De Munari, "Light on! Real world evaluation of a 

P300-based brain-computer interface (BCI) for environment control 

in a smart home," in Ergonomics, vol.55, no.5, pp. 552- 563, 2012. 

 

[6] H. Cecotti, "A Self-Paced and Calibration-Less SSVEP-Based 

Brain–Computer Interface Speller," in IEEE Trans. Neural Syst. 

Rehabil. Eng., vol.18, no.2, pp.127-133, Apr. 2010. 

 

[7] I. Volosyak, "SSVEP-based Bremen-BCI interface - boosting 

information transfer rates," in J Neural Eng., vol.8, no.3, Jun.2011. 

 

[8] S. Walter, C. Quigley, S.K. Andersen, M.M. Mueller, "Effects of 

overt and covert attention on the steady-state visual evoked 

potential," in Neurosci. Lett., vol.519, no.1,pp.37-41, Jun. 2012. 

 

[9] N. Mora, V. Bianchi, I. De Munari, P. Ciampolini, “A Low Cost 

Brain Computer Interface Platform for AAL Applications,” in 

AAATE 2013 Conf. Proc., Sept. 19-22 Vilamoura, Portugal, 2013. 

 

[10] N.A.M. Norani, W. Mansor, L.Y. Khuan, "A review of signal 

processing in brain computer interface system," in Biom. Eng. and 

Sciences (IECBES), IEEE EMBS Conf. on, pp.443,449, 2010. 

 

[11] G. Garcia-Molina, D. Zhu, "Optimal spatial filtering for the 

steady state visual evoked potential: BCI application," in Neur. 

Eng., 5th International IEEE/EMBS Conf. on, pp.156,160, 2011. 

 

[12] Z. Lin, C. Zhang, W. Wu, X. Gao, “Frequency recognition 

based on canonical correlation analysis for SSVEP-based BCIs,” in 

IEEE Trans. Biomed. Eng., vol.54, pp.1172–1176, Jun. 2007. 

2067


