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ABSTRACT
Reliable estimation of covariance matrices from high-dimen-
sional electroencephalographic recordings is crucial for a suc-
cessful application of Brain-Computer Interface (BCI) sys-
tems. Artifactual trials and non-stationarity effects may have
a large impact on the estimation quality and adversely affect
the spatial filter computation and consequently the classifi-
cation accuracy of the system. In this work we propose a
novel robust estimator for covariance matrices that takes into
account the trial structure of BCI experiments. Our estimator
minimizes beta divergence between the empirical and a model
Wishart distribution, thus allows to robustly average the esti-
mated covariance matrices of different trials and downweight
the influence of outlier trials. We evaluate this novel estimator
on a data set with recordings from 80 subjects.

Index Terms— Brain-Computer Interface, Robust Esti-
mation, Beta Divergence

1. INTRODUCTION

Brain-Computer Interface (BCI) systems [1] [2] translate
recorded brain signals, e.g. EEG, into control commands for
a computer application by decoding the mental state of a
subject (e.g. induced by left or right hand movement imag-
ination). Common Spatial Patterns (CSP) (e.g. [3] [4]) is a
popular algorithm for motor imagery based BCIs as it largely
reduces the dimensionality of the data and focuses on the rel-
evant part by maximizing the variance ratio between classes
(ERS/ERD effect). The performance of CSP (and the whole
BCI system) depends on reliable estimation of class covari-
ance matrices from trials performed in the calibration session.
However, artifacts such as loose electrodes, eye movements,
jaw clenching or muscle activity may largely influence the
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recorded brain signals and lead to “outlier trials” with very
different covariance structure. These trials may have a large
impact on the estimated class covariance matrices used for
spatial filter computation as neither the standard covariance
estimator nor the averaging of trial covariance matrices are
robust to outliers.

The development of robust spatial filtering methods have
recently gained a lot of attention in the BCI community [5]
[6] [7] [8] [9] [10]. Classical ICA-based approaches for arti-
fact identification and removal have also been applied in this
context [11]. In this paper we neither directly robustify the
CSP algorithm nor do we apply advanced artifact removal.
We rather provide a novel tool for robust estimation of class
covariance matrices from multiple trials.

Note that the idea to robustly estimate the covariance ma-
trices before applying CSP is not novel. It has been applied
in [5] where the authors use shrinkage to improve the estima-
tion. But also the minimum covariance determinant (MCD)
estimator has been used for this task [12]. Note that the MCD
estimator provides robust estimates with respect to individual
samples, i.e. it ignores trial structure and downweights outlier
samples rather than whole trials. The authors of [13] intro-
duce the idea to robustly average trial covariance matrices,
i.e. downweight outlier trials. This approach relies on robust
p-norms but does not have an interpretation in terms of maxi-
mizing the likelihood of an underlying data generating model.
In this paper we propose an estimator that robustly averages
the trial covariance matrices and has a maximum likelihood
interpretation. The estimator is based on the concept of Ψ-
likelihood [14] and minimizes the beta divergence between
the empirical and a model Wishart distribution.

This paper is organized as follows. Section 2 discusses
robust estimation on sample and on trial level and introduces
our novel estimator. Section 3 applies this estimator to a data
set of 80 subjects, compares the results to standard CSP and
briefly discusses the advantages and limitations. We conclude
this work with a summary and outlook in Section 4.
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2. ROBUST COVARIANCE ESTIMATION

Reliable computation of the covariance matrix is of crucial
importance in motor imagery based BCI. The problem can
be formulated as estimation of a parameter θ of a statistical
model (e.g. zero-mean Gaussian distributions f(y, θ)) given
observations D = {yi : i = 1 . . . n}. A standard procedure
to estimate this parameter is to maximize the log-likelihood
L(θ | D) of the parameter given the observations

L(θ | D) =
1

n

n∑
i=1

`(yi, θ). (1)

This method is not robust (because of the averaging opera-
tion) in the sense that single observations yi may dominate the
solution. Eguchi and Kano [14] introduced the concept of Ψ-
likelihood to perform robust parameter estimation. Intuitively
they apply a sigmoid-like function Ψ to the likelihood `(yi, θ)
limiting the influence of each observation. In their work they
show that this principle is equivalent to the minimization of
so-called Ψ-divergence between the empirical and the model
distribution.
In this work we use a special choice of Ψ, namely

Ψβ(z) =
exp(βz)− 1

β
. (2)

By using this function the Ψ-divergence reduces to β-divergence

Dβ(p(x) || q(x)) =

∫ [
1

β

{
pβ(x)− qβ(x)

}
p(x) (3)

− 1

β + 1

{
pβ+1(x)− qβ+1(x)

}]
dx,

where p(x) denotes the empirical data distribution and q(x)
stands for the model probability distribution with parameter
θ. By minimizing this quantity we obtain a robust estimate of
the parameter θ.

2.1. Sample Perspective

One way to apply this estimator to our BCI problem is to pool
data from all trials and to estimate the parameter θ = Σ ∈
RC×C by minimizing beta divergence. This estimator has
been derived in [14] and can be computed iteratively by

Σ(k+1) =
1
n

∑n
i=1 ψβ(yi; Σ(k))yiy

>
i

1
n

∑n
i=1 ψβ(yi; Σ(k))− β/(β + 1)C/2+1

, (4)

where Σ(k) denotes the estimate of the parameter in kth step
and ψβ(yi; Σ) = e−

1
2βy

>
i Σ−1yi is a factor downweighting the

influence of outlier samples yi. Note that for β = 0 this esti-
mator reduces to the standard maximum likelihood estimator
Σ̂ = 1

n

∑n
i=1 yiy

>
i .

2.2. Trial Perspective

In this work we propose a novel estimator that does not down-
weight individual EEG samples yi, but rather reduces the in-
fluence of whole trials. Since trials represent a group of sam-
ples, our estimator provides robust estimates on a group level.

Let us assume that we have estimates of the trial covari-
ances {Σi ∈ RC×C : i = 1 . . . n} maximizing the log-
likelihood in each trial and our goal is to estimate the (aver-
age) class covariance matrix in a robust manner i.e. by down-
weighting outlier trial covariance matrices. In other words
we regard the trial covariances (or the scatter matrices) as our
samples, not the EEG samples as before, and robustly com-
bine them. For that we use the Wishart distribution q(S; Σ, ν)

1

2
νC
2 |Σ| ν2 ΓC

(
ν
2

) |S| ν−C−1
2 exp

{
−tr

(
1

2
Σ−1S

)}
, (5)

where S =
∑ν
i=1 yiyi is the scatter matrix and ΓC is the

multivariate gamma function defined as

ΓC

(ν
2

)
= π

C(C−1)
4

C∏
j=1

Γ

[
ν

2
+

(1− j)
2

]
. (6)

We aim to derive the covariance matrix Σ from the scatter
matrices Si of trials i = 1 . . . n by minimizing beta diver-
gence. We can show1 that beta divergence between Wishart
distributions can be minimized by an iterative procedure

Σ(k+1) =

∑n
i=1 ψβ

(
Si; Σ(k), ν

)
Si

ν
∑n
i=1 ψβ

(
Si; Σ(k), ν

)
− γ|Σ(k)|

(ν−C−1)β
2

, (7)

where

ψβ(S; Σ, ν) = |S|
(ν−C−1)β

2 exp

{
−tr

(
β

2
Σ−1S

)}
. (8)

is a factor downweighting the influence of outlier trials and

γ =
nβ(C + 1)

2
νC
2 ΓC

(
ν
2

)
(β + 1)

(
2

β + 1

) νC(β+1)
2 −C(C+1)β

2

(9)

×ΓC

(
ν(β + 1)

2
− (C + 1)β

2

)
.

Note that for β = 0 our estimator gives the maximum likeli-
hood solution

Σ =
1

nν

n∑
i=1

Si. (10)

1Due to space limitations we can not show the derivation here.
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3. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of CSP with class
covariances matrices estimated by our novel Wishart Estima-
tor and compare the results to the standard maximum likeli-
hood CSP baseline. We use a data set [15] containing EEG
recordings from 80 BCI novices performing motor imagery
tasks with the left and right hand or with the feet. The data
contain a calibration session and a test session with 1D visual
feedback. We select the two best motor imagery classes for
each subject, resulting in 150 calibration and 300 test trials.
We manually select 62 electrodes densely covering the motor
cortex, apply a 5th order Butterworth filter to band pass filter
the data in 8-30 Hz and extract a time segment ranging from
750ms to 3500ms after the trial start. We use six spatial fil-
ters for feature extraction and perform classification by using
Linear Discriminant Analysis.

Figure 1 compares the results of CSP with robustly av-
eraged trial covariance matrices (Wishart Estimator CSP) to
the standard CSP baseline (β = 0). Each circle represents
the error rate of one subject and one can clearly see that the
application of our novel estimator leads to an improved clas-
sification accuracy for most of the participants (circles below
solid line). This improvement is statistically significant with
p = 0.0042 according to the one-sided Wilcoxon sign-rank
test. Note that the β parameter has been selected by five-fold
cross-validation on the training data from {0, 2−20, . . . , 20}.
The ν parameter has been set to a fraction (1/20) of the num-
ber of samples in the trial because EEG recordings are far
from being i.i.d.
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Fig. 1. Comparison of error rates of Wishart Estimator CSP
and standard CSP for 80 subjects.

Figure 2 shows the median error rate (over all 80 subjects)
for different β parameters. One can see that the error rate
curve has a U-shape, i.e. it decreases up to a specific β value
and then increases again. Very small β parameters have no
robustness effect whereas too large values have a too strong
influence on the solution. Finding the right trade-off is key

for obtaining good performance in practice.

Beta parameter
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Fig. 2. Median error rate (over 80 subject) for different beta
parameters.

The top panel of Fig 3 shows the weights ψβ
(
Si; Σ(k), ν

)
applied to the trials when computing the class covariance ma-
trices for the subject with largest error rate decrease in Fig. 1.
One can clearly see that some weights are very small, almost
zero; this indicates that some trials are real outliers. On the
other hand there are only small differences in the weights
among the majority of trials. The bottom panel of Fig. 3
shows the signal at electrode FFC5 of the trial with lowest
weight. This trial contains large artifactual amplitude activ-
ity at the beginning. This activity has an amplitude that is
almost one order larger than the standard amplitude, thus this
trial is an outlier trial and would have a large impact on the
estimated class covariance matrix. Fortunately, it has been
downweighted by our method.

4. DISCUSSION

In this work we introduced a novel robust estimator for covari-
ance matrices which takes into account trial structure. It ro-
bustly combines trial covariance matrices thus downweights
the influence of outlier trials. The estimator can be com-
puted by minimizing beta divergence between the empirical
data (samples are trial scatter matrices) and a model Wishart
distribution. We derived a fast iterative algorithm to perform
the minimization and showed that our estimator significantly
improves BCI performance. Note that our estimator naturally
takes into account the uncertainty in the estimation of the scat-
ter matrices by using the parameter ν.

In future work we will study the advantages and limita-
tions of the trial perspective over the sample perspective. Fur-
thermore we will apply the idea of robust averaging of covari-
ance matrices to other problems like the combination of co-
variance matrices of different users / session. Finally we will
investigate the relations between robustness on the parameter
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Fig. 3. Trial weights for the subject with largest performance
increase (top) and the signal at electrode FFC5 of the trial
with lowest weight (bottom).

estimation level (as proposed in this work), analytic shrinkage
(e.g. [16]) and robustness on the CSP level (e.g. [8]).
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