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ABSTRACT
Traditional compression techniques optimize signal fidelity
under a bit rate constraint. However, signals are often not
only reconstructed for human evaluation purposes but also an-
alyzed by machines. This paper introduces a two-part predic-
tive (2PP) coding architecture intended for signal compres-
sion with the dual purposes of preserving signal fidelity and
feature fidelity. First we introduce the architecture of the
2PP coder, then we apply and evaluate it on two problems:
scene classification and pedestrian detection. Tradeoffs be-
tween compression rate, mean-squared reconstruction error,
and classification accuracy, are explored.

Index Terms— compression, predictive coding, quan-
tizer learning, scene classification, pedestrian detection

1. INTRODUCTION
The vast amount of image and video data produced by surveil-
lance and related applications presents critical challenges in
terms of storage, transmission, processing, and interpreta-
tion – especially when the image sensors operate in mobile
and bandwidth-constrainted environments. While traditional
compression methods such as JPEG2000 (for still images)
and H.264 (for video) attempt to maximize visual quality
under a rate constraint, they are not ideal for other tasks
such as target identification, detection, and localization. In
particular, the features extracted from the compressed im-
ages or video might be substantially degraded versions of
the original ones. This has negative consequences in terms
of performance for the aforementioned tasks. For exam-
ple, when detecting pedestrians in compressed video, false
positives and misses increase sharply. As illustrated in Fig
1, the state-of-the-art FPDW pedestrian detection algorithm
performs well on the uncompressed image but poorly on the
JPEG2000 compressed image.

The basic question then, is how to compress signals when
multiple evaluation criteria are relevant. Interest in theoreti-
cal and practical aspects of this problem began in the 1990s.
Baras et al. [2] and Perlmutter et al. [3] designed vector
quantizers for the problem of joint compression and classifi-
cation, and Jana and Moulin [4] optimized transform coders
for such problems. However these papers use fairly simple

Fig. 1. Detection results of the state of the art pedestrian de-
tector, the Fastest Pedestrian Detector in the West (FPDW)
[1] are shown in green bounding boxes. The left is an uncom-
pressed frame and the right is a JPEG 2000 compressed frame
at compression ratio of 1000.

surrogate functions for coder design and do not provide means
to exploit the latest advances in image/video compression and
classification. Hence, we propose a two-part predictive (2PP)
coder which integrates state-of-the-art compression and clas-
sification building blocks and aims at providing good visual
quality as well as high-quality image features. Our 2PP coder
uses compressed signals as predictors for features. Related
work includes scalable coding [5], where a low-resolution
video is used to predict a high resolution version. The 2PP
coder is described in Section 2 and applied to scene classifi-
cation in Section 3 and to pedestrian detection in Section 4.

2. THE 2PP CODER
The 2PP coder is diagrammed in Fig. 2. Its key components
are a lossy codec, feature extractors, and quantization func-
tions. These components are integrated into a predictive cod-
ing framework as diagrammed in Fig. 2(a). The choices of the
codec and the feature extractor depend on the type of signal
and on the content analysis task at hand. The codec is a state-
of-the-art system such as JPEG 2000 for images, H.264 for
videos, and MP3 for audio. The feature extractor captures es-
sential information for content analysis, such as spectrograms
for speech recognition, dense SIFT visual-word histograms
for scene classification [6], and integral channel features [7]
for pedestrian or object detection. The quantizers will be dis-
cussed later in this section.

The 2PP coder outputs two parts: content bits and feature
bits. The aforementioned lossy codec generates the content
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bits. The feature extractor computes the features for both the
original and compressed signals. The difference (prediction
error) is then quantized and encoded into feature bits which
will be used to mitigate the information loss due to compres-
sion.

The 2PP decoder is diagrammed in Fig. 2. First the con-
tent bits are used to decompress and display the signal. Sec-
ond, the (degraded) features are computed from this decom-
pressed signal. Third, they are refined using feature bits, and
input to the content analysis algorithm.

For a given bit budget, the 2PP coder allows a tradeoff be-
tween visual quality and content analysis through allocation
of bits to content and to features. One extreme of the trade-
off is to allocate all bits to content (as is done in conventional
coders). The other extreme is to allocate most bits to fea-
tures. In practice, a suitable operating point can be selected
that provides satisfactory visual quality and content analysis
performance.

(a) Encoder of 2PP coder.

(b) Decoder of 2PP coder.

Fig. 2. 2PP coder architecture

Formally, we denote by I 2 Rn the uncompressed signal,
by ˆI 2 Rn the compressed version of I , by �(·) : Rn 7! Rd

the d-dimensional feature extractor that maps I to Z = �(I)
and ˆI to ˆZ = �(ˆI), by E = Z� ˆZ the feature prediction error,
and by ˜E the lossy compressed version of E. The content bits
describe the compressed signal ˆI . The feature bits describe
the lossy compressed feature prediction error, ˜E.

Receiving ˆI and ˜E, the 2PP decoder approximates the
original feature vector Z by ˜Z = �(ˆI) + ˜E which is input
to the content analysis module.

The 2PP coder allows a tradeoff between visual quality
and analysis performance. Denote by B1 and B2 the num-
ber of content and feature bits, respectively. According to
bandwidth and performance requirements, a user chooses a
bit budget ¯B � B1 + B2 and determines the number of con-

tent bits, B1, and feature bits, B2.
To control B1, the user tunes settings of the compression

scheme, such as the compression ratio of JPEG2000 or bit
rate of H.264. To control B2, the user selects the number of
bits assigned per feature. Of the original d scalar features,
only a subset (of size d0  d) will be allocated bits.

Precisely, the number of feature bits, B2, depends on d0

as well as the statistics of feature prediction error vector E =

{Ej , 1  j  d}. We quantize each Ej into k levels by a
quantizer qj : R 7! {qj1, . . . , qjk}. The quantized feature
prediction error vector is then ˜E = {qj(Ej), 1  j  d}.
The number of bits required to encode ˜E, assuming an en-
tropy encoder and statistically independent components, is
B2 =

Pd
j=1 H(

˜Ej), where H(

˜Ej) denotes the entropy of
˜Ej . Hence, B2  d log2 k, where the upper bound holds

when {Ej}dj=1 are uniformly distributed. If d0 < d we have
B2  d0 log2 k.

The design of quantizers qj(·) affects B2 in two ways.
First, B2 grows logarithmically with the number of levels k.
Second, the quantization levels {qj1, . . . , qjk} affect the dis-
tribution of ˜E. The quantizers could be designed heuristically
or learned from training data. Heuristic designs require prior
knowledge of the distribution. Instead, we learn the quantiza-
tion levels from training data as described below.

For each element Ii, 1  i  p of a set of p training
data, we first compute its features Zi = �(Ii), its compressed
version ˆIi, the features of its compressed version ˆZi = �( ˆIi),
and its prediction errors Ei = Zi � ˆZi. We propose two
quantizers:

1. A simple 3-level quantizer with levels {µj��j , µj , µj+

�j}, where µj and �j denote the empirical mean and
standard deviation of {Eij}pi=1 and Eij denotes the jth
component of Ei.

2. A Lloyd-Max quantizer of k levels trained from {Eij}pi=1.

The compression ratio of the 2PP coder is given by

compression ratio , original file size
B1 +B2

. (1)

We have selected scene classification and pedestrian de-
tection as case studies. We have designed and evaluated 2PP
coders for these tasks and investigated performance as a func-
tion of compression ratio for different 2PP settings, and the
tradeoff between visual quality (PSNR) and classification ac-
curacy at fixed compression ratios.

3. SCENE CLASSIFICATION
We describe natural scenes by dense SIFT visual-word his-
togram features [6][8], which is also popular for object clas-
sification [9]. Lloyd-Max quantizers are learned from train-
ing data and used in the predictive coding scheme. For eval-
uation, we used the Fifteen Scene Categories dataset [6], in
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which each category contains pictures of the same type of
scene. Note that the dataset is already slightly compressed
(with compression ratio around 3) and has a few artifacts.

To control the 2PP output size, B1 + B2, we employed
JPEG 2000 image coder to control B1 and let the fea-
ture dimensions (number of visual words) range over d =

25, 50, 100, 200, 400 to control B2. We also controlled B2 by
employing different quantization levels k = 2, 4, 8, 16.

Following [6], 100 images per category were used for
training and the rest for testing, and the percentage of cor-
rectly classified images, or accuracy, was used as the perfor-
mance metric.

3.1. Accuracy vs. Compression Ratio

Figs. 3 and 4 show classification accuracy vs. Compression
Ratio for d = 25 and 200 features, respectively. Each figure
has 5 curves, representing different PSNRs: 18.4, 20.2, 21.6,
23.6, 28.7. Each curve was obtained by fixing the number of
quantization levels to k = 2, 4, 8, 12, 16.

We may view the slope of the curves as a measure of
marginal classification accuracy acquired per bit. In Fig. 3
(d = 25), the slopes of the curves is approximately �0.32.
However, in Fig. 4, (d = 200), the slopes are in the range
�0.18 to �0.15. In general, the marginal return decreases as
d increases.

This can be explained as follows. Since B2 = d log2 k
grows faster with k when d is large, B1 is smaller and the
features extracted (predicted) from the compressed image are
relatively poor. This makes the feature prediction errors larger
and harder to quantize and encode. Therefore, the informa-
tion loss due to low B1 reduces the marginal benefits of extra
feature bits.

0 50 100 150 200 250 300
30

32

34

36

38

40

42

44

46

48

50

Compression ratio

Ac
cu

ra
cy

Classification Accuracy vs Compression Ratio for 25 features

 

 

PSNR = 28.7
PSNR = 23.6
PSNR = 21.6
PSNR = 20.2
PSNR = 18.4

Fig. 3. Accuracy vs. Compression Ratio with Feature Dimen-
sion of 25. The performance on uncompressed data is around
49%.

3.2. Accuracy vs. PSNR

Fig. 5 shows the tradeoff between accuracy and PSNR at
compression ratio 150. Each figure has 5 curves, representing
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Fig. 4. Accuracy vs. Compression Ratio with Feature Di-
mension of 200. The performance on uncompressed data is
around 67%.

different feature dimensions, d = 25, 50, 100, 200, 400. Each
curve was obtained by fixing the number of quantization lev-
els to k = 2, 4, 8, 16. Fig. 6 shows sample images whose
PSNR ranges from 20 to 22.

As seen on the right of the figure, we have a 6% accuracy
gain by trading off 0.8 of PSNR, from d = 50 and k = 8

to d = 200 and k = 16. In general, the 2PP allows a sharp
tradeoff ratio (steep slope) between PSNR and accuracy. Note
that at higher compression ratios, using d = 400 features the
trade from PSNR to accuracy is more costly.

The 2PP coder presents significant advantages compared
to the baseline, by substantially improving at a small PSNR
loss. The operating point may be selected depending on the
user’s weighting of visual quality and accuracy.

We also experimented on lower compression ratios ( 20)
which give higher PSNR (� 30) images. The graphs are omit-
ted due to space limitations. In those experiments, classifica-
tion accuracy does not drop as much ( 1%) and the advan-
tages of the 2PP architecture are marginal.
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Fig. 5. Average peak noise-to-signal ratio (PSNR) vs. ac-
curacy at compression ratio of 150. Number 0, 1, 2, 3, and
4 represent the baseline, using 2, 4, 8, and 16 quantization
levels, respectively.
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Fig. 6. Sample images from “bedroom” with PSNR 22, 21.5,
21, and 20, respectively.

4. PEDESTRIAN DETECTION
A pedestrian detection system analyzes video frames and lo-
cates pedestrians in the sequence. While pedestrian detec-
tion is actively researched in computer vision, all current ap-
proaches focus on accuracy but not on robustness to compres-
sion. We built an pedestrian detection system with the 2PP
architecture based on the Fastest Pedestrian Detection in the
West (FPDW) [1] and evaluated the system on the Caltech
Pedestrian Dataset.

Following [1], we 1) use integral channel features, includ-
ing histogram, gradient magnitude, and gradient histogram,
2) train and evaluate pedestrian detectors on every 30th frame,
and 3) assess detection performance by log-average miss rate,
which is the average of miss rates at nine false positives
evenly spaced in log-space in the range from 10

�2 to 10

0.
We use H.264 as the baseline video encoder.

To control B2, we allocate feature bits to the following
feature subsets: 1) no features (baseline), 2) all features, 3)
color features only, and 4) gradient histogram features only.

4.1. Log-Average Miss Rate vs. Compression Ratio

In this section, we compare log-average-miss-rate improve-
ments between the settings. Log-average miss rate vs. Com-
pression Ratio for the four settings are summarized in Fig.
7.

The log-average miss rate of uncompressed video is
44.5%. Remarkably, H.264 only suffers 5 � 10% of log-
average miss rate at compression ratios up to 900. Even
though, the 2PP coder reduces miss rate up to 5% at compres-
sion ratios up to 600. Interestingly, while gradient histograms
are the most informative integral channel features [7], sending
feature bits for gradient histogram features gives the worst
performance. One explanation is that different features bene-
fits differently from feature bits. Gradient histogram features
may be more robust to H.264, and therefore sending feature
bits for histograms are less beneficial.

4.2. Log-Average Miss Rate vs. PSNR

Fig. 8 shows the tradeoff between log-average miss rate and
visual quality (PSNR) at fixed compression ratios. We per-
formed experiments on all four settings at compression ratios
300, 400, 500, and 600. The results are summarized in Fig. 8.

We make the following observations: 1) Sending feature
bits for color features gives the best tradeoff. One gains 2%

of log-average miss rate by paying merely 0.1, 0.3, 0.4, and

0.6 of PSNR at compression ratios 300, 400, 500, and 600,
respectively. 2) Again, as discussed in the previous section,
sending extra feature bits for color features is more beneficial
than sending extra feature bits for histogram or all features.
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Fig. 7. Log-average miss rate vs. compression ratio for base-
line (no feature bits), sending feature bits for all features,
color features, and all features.
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Fig. 8. Log-average miss rate vs. average PSNR at different
compression ratios. Number 3, 4, 5, 6 denotes compression
ratios 300, 400, 500, 600.

5. CONCLUSION AND FUTURE WORK
We have introduced the 2PP coding architecture, which al-
lows users to pick an operating point and trade off signal
reconstruction and content analysis performance according
to their preference. We designed and evaluated 2PP coding
systems for scene classification and pedestrian detection and
demonstrated the merits of the 2PP coder.

For future work, one direction is to explore and design
quantizers that exploit correlations between features, such as
interframe correlation for videos and cross-feature correla-
tions. Another direction is to compare the 2PP coder with
post-processing techniques that remove compression artifacts
from the signals or refine signal fidelity by features.
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