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ABSTRACT

Rapid growth of emerging medical applications such as e-

health and tele-medicine requires fast, low cost, and often

lossless access to massive amount of medical images and data

over bandlimited channels. In this paper, we first show that

significant amount of correlation and redundancy exist across

different medical images. Such a correlation can be utilized

to achieve better compression, and consequently less storage

and less communication overhead on the network. We pro-

pose a novel memory-assisted compression technique, as a

learning-based universal coding, which can be used to com-

plement any existing algorithm to further eliminate redundan-

cies across images. The approach is motivated by the fact that,

often in medical applications, massive amount of correlated

images from the same family are available as training data for

learning the dependencies and deriving appropriate reference

models. Such models can then be used for compression of

any new image from the same family. In particular, Princi-

pal Component Analysis (PCA) is applied on a set of images

from training data to form the required reference models. The

proposed memory-assisted compression allows each image to

be processed independently of other images, and hence al-

lows individual image access and transmission. Experimen-

tal results on Xray images show that the proposed algorithm

achieves 20% improvement over and above traditional loss-

less image compression methods reported in the literature.

1. INTRODUCTION

A large amount of digital images is produced by hospitals

and medical centers and stored in databases everyday. This

vast amount of data translates into huge storage requirements.

Further, in telemedicine and teleradiology applications, these

images need to be transmitted over the network, consuming

high bandwidth capacity. Therefore, compression is a neces-

sity for handling this vast amount of images. More impor-

tantly, in computer assisted diagnosis, loss of any part of the

information contained in the data can be detrimental. There-

fore, lossless image compression is the method of choice for

medical images. Most of the literature on lossless compres-

sion for medical images merely considers compression algo-

rithms that are based on spatial redundancy removal within an

individual image so as to achieve better compression perfor-

mance. Hence, opportunities in using cross-image redundan-

cies to further compress data are often overlooked!

The goal of this work is to develop practical algorithms

that can first exploit both intra- and inter-image redundan-

cies for a dictionary of medical images. Secondly, we re-

quire that the algorithms allow individual (random) access to

images. In other words, when a retrieval request for an in-

dividual image is received, the proposed algorithm should be

able to retrieve the requested image without decompressing

the whole database. We argue that the compression problem

discussed above can effectively be solved using the recently

developed “memory-assisted compression” technique devel-

oped by the authors [1]. As such, we discuss the adaptation

of well-known compression algorithms in the literature to this

concept of memory-assisted compression framework, which

can be formulated as a two phase compression scheme. The

first phase is learning, in which the algorithm runs over a sub-

set of images in the database, and extracts the commonalities

shared among all the images. Such information is stored and

used in the next phase; the memory-assisted compression. We

should note that, in several applications, the subset of the im-

ages in the first phase is readily available. As one example,

in telemedicine applications, where medical images are taken

every day and transmitted over the network, the images from

the previous day, for example, can serve as the memory for

the next day, and so on.

Our focus here is mostly on the second phase, i.e., the

memory-assisted compression. In the second phase, for com-

pression of every image in the database, the common informa-

tion stored in the memory is used to eliminate the inter-image

redundancy and only the residual is fed to traditional lossless

compression algorithms. We reiterate here that the proposed

two-phase structure enables individual access to all the im-

ages without the need to decompress the whole database and

at the same time, all the dependencies present among the im-

ages are used for efficient compression.

2. BACKGROUND AND RELATED WORK

As previously described, the use of correlation information

across images has been very limited in lossless image com-

pression. Most of the previous work only focuses on the com-

pression of a single image regardless of the redundancy that

is present in the set of images to which this specific image be-

longs. In this section, we review some of published research

on lossless image compression based on individual medical

images.

MacMahon et al. [2] proposed a form of adaptive block
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Cosine Transform coding, in which considerable compres-

sion of digital radiographs with minimal degradation of image

quality is allowed. Their results obtained for chest radiolog-

ical images showed a compression ratio as high as 25. Ek-

strand [3] presented a lossless compression algorithm based

on Context Tree Weighting (CTW). The algorithm performs

optimally in terms of redundancy for a wide range of data

sources including medical gray scale images. The results

show enhanced performance compared to JPEG, JBIG, and

CALIC. Asraf et al. [4] proposed a novel hybrid lossy and

lossless compression method using neural networks, vector

quantization, and Huffman coding. The method was tested

on CT (Computerized Tomography) images achieving a com-

pression ratio of 5 to 10. A lossless medical image compres-

sion method was presented by Kil et al. [5]. The method was

based on redundancy analysis and segmentation of image into

Variable Block Size (VBS) in order to extract similarities and

smoothness of blocks. It was reported that the technique out-

performs Huffman, JPEG-LL and lossless JPEG2000 by 10-

40%. Ghrare et al. [6] introduced a lossless image coding

algorithm based on pixel redundancy reduction and using 2

matrices of Gray Scale and Binary. The algorithm achieved a

maximum compression ratio of 4. Miaou et al. [7] proposed

an image compression technique which combines JPEG-LS

and interframe coding with motion vectors showing a better

than JPEG-LS alone. They tested their algorithm with six

capsule endoscope image sequences and improved the aver-

age compression by 13.3% and 26.3% over JPEG-LS and

JPEG-2000, respectively. We emphasize here that our fo-

cus is on removing inter-image redundancy using memory-

assisted compression. Again, the proposed algorithm can be

used as an add-on to any existing image compression tech-

nique. In our experiments, we chose to work with the JPEG-

LS, CALIC, CTW, and bzip2 algorithms.

3. PROBLEM SETUP AND PROPOSED APPROACH

The main rationale behind memory-assisted compression is

learning source statistics at some intermediate entities, then

leveraging the memorized context to reduce redundancy of

the universal compression of finite length sequences. To the

best of our knowledge, this is the first attempt in using cross-

image correlation in medical image compression. Indeed, we

propose to apply the concept of memorization with medical

image sequences. The basic problem setup in a telemedicine

application is displayed in Fig. 1. The source contains a set

of correlated medical images (eg. Chest X-ray images) at the

server node S (e.g., the central hospital) that need to be en-

coded and transmitted to the destination node (e.g. remote

hospital) D through the network. We further assume that hos-

pital D has already memorized a database of previously trans-

mitted images in its database which is also shared with S. In

the absence of memorization, traditional compression tech-

niques can still be applied for transmitting the sequence of

images from S to D. Here, we argue that the communication

overhead to send the images from S to D can substantially be

reduced if memorized context is available to the encoder and

the decoder. In this paper, we present two different scenarios

to compare results of traditional lossless image compression

algorithms with our proposed memory-assisted compression

algorithms.
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+ 
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Fig. 1. The proposed memory-assisted compression algo-

rithm.

First, we just apply traditional compression algorithms,

from state-of-the-art, on a set of medical images. In this sce-

nario, redundancy is only considered within a single image

for encoding and decoding it. The problem is that every sin-

gle image is encoded without considering other images in the

same set leading to low compression ratio and additional over-

head. Next, we apply our memory-assisted compression algo-

rithm using the simple PCA algorithm [8] within the same set

of images. In this case, the encoder and decoder have access

to the memorized context for compression of new unknown

images. We show that we can obtain a significant improve-

ment in compression ratio for lossless medical images over

state-of-the-art algorithms used in the literature.

4. THE PROPOSED MEMORY-ASSISTED

COMPRESSION ALGORITHM

In this section, we describe the proposed algorithm in further

details. Consider a basic scenario in which a set of X-ray

images is available at node S, and node D requests one of

the images, as shown in Fig. 1. This scenario can be an ab-

straction of a transmission problem or a storage and retrieval

problem. Our benchmark is the case in which each image is

compressed individually and sent to D. Then, at node D, each

compressed image is decompressed independently.

In the proposed method, the outcome of the learning

phase, called M, of memory-assisted compression is avail-

able at both S and D. Then, using M, just the residuals

of other test images are encoded at node S and decoded at

node D. The proposed memory-assisted lossless compres-

sion method consists of two main phases : 1) Learning(

memorization), 2) Memory-assisted Compression (testing).

The main question now is how can we consider and model

the memorization concept from a set of gray-scale medical

images? The simple answer comes from the Karhunen Lo-

eve transform (KLT) [9]. KLT is shown to be the optimal

orthogonal transform through which the energy (information)

contained in the signal is compacted. Indeed, with KLT, most

energy is redistributed over a small number of components or

simply called eigenimages. These eigenimages are obtained

from the decomposition of the estimated covariance matrix.

For our experiments, we simply use the PCA transformation

matrix to decorrelate the images and remove inter-image re-

dundancy. PCA is a statistical approach used to find an or-

thogonal transformation to decorrelate random variables. The

PCA technique has extensively been used in diverse signal
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and image processing applications. It has originally been in-

troduced as a dimension reduction technique. The technique

starts with a set of observation vectors of dimension N. For

images, the columns are concatenated into a large vector of

size N (number of pixels). Let M be the number of observa-

tions in the training set:

xi = [p1, ....., pN ]T , i = 1, ....M (1)

From these observations, the mean vector and covariance ma-

trix are estimated:

m =
1

M

M∑

i=1

xi (2)

C =
1

M

M∑

i=1

(xi −m)(xi −m)T (3)

Let’s represent the mean centered observations by: wi = xi−
m, i = 1, 2, ....,M .

The goal is to find a subspace whose basis vectors cor-

respond the maximum-variance directions in the orthogonal

space. Let W represent this linear transformation that maps

the original N-dimensional space onto a K-dimensional fea-

ture subspace where normally K≪N. The columns of W are

the eigenvectors, ei, of the covariance matrix C. The eigen-

vectors are obtained using eigen-decomposition of C, λiei =
Cei and λi is the eigenvalue associated with ei.

For a given observation vector xi, the transformation re-

sults in a new vector yi given by: yi = WT (xi −m). As the

first few eigenvalues represent most energy in the data, we

usually select K to be much smaller than N. The original ob-

servation vectors can then be reconstructed using the inverse

transform. x̂i = WT +m. Note that since C is an NxN ma-

trix where N is the total number of pixels in the image, finding

the eigenvectors may not be easy to do. Luckily, a number of

techniques have been proposed to get around this difficulty.

For our experimental setup, the PCA procedure discussed

above was first applied to the training set of images. Once

the training stage is completed, we move to the coding stage.

In this stage, test images are first projected over the PCA

space. Using the reduced PCA space, the test images are re-

constructed. These reconstructed images are close approxi-

mation of the original images. An error image is obtained

by subtracting the reconstruction image from the original test

image. It is simple to show that the pixel values of such an

error image are uniformly distributed.

As such, we can compress error images in a more op-

timized way using the traditional CTW, JP-LS, CALIC and

bzip2 algorithms. This means that we only need to send the

feature vectors as well as the new compressed error images

to the receiver. At the receiver, we first reconstruct the image

projection then add to it the decompressed error image.

To evaluate the performance of the proposed approach,

we considered two scenarios and 4 generic compression tech-

niques. The compression techniques considered include: the

CTW, JPEG-LS, CALIC, and bzip2 algorithms. The two sce-

narios are explained below:

• Scenario 1(Comp): It denote the case of using the

CTW, bzip2, JPEG-LS, and CALIC algorithms directly

on the test set.

• Scenario 2(PCAComp): Here, PCA is applied on a

train set of images. Then, for testing, the images are

first projected and reconstructed using the PCA. Sec-

ond, the residual images are encoded using the CTW,

bzip2, JPEG-LS, and CALIC algorithms. At the re-

ceiver, the images are reconstructed using the decoded

residuals added to the PCA-reconstructed images.

5. SIMULATION RESULTS

In this section, we will discuss our experimental results. For

lossy compression, we usually use the RMSE and a mea-

sure of performance, but for lossless coding, compression ef-

ficiency is usually measured using compression ratio. Com-

putational complexity is another factor that determines the ef-

ficiency of the method. This can be the number of CPU cy-

cles, number of hardware gates, or memory bandwidth, etc.

These are usually application dependent. In our work, we

focused mainly on the compression ratio defined as the com-

pressed image size Scomp over the original image size So, i.e.

CR =
Scomp

So

In other words, the CR represents the number of bits the

scheme uses to represent each bit in the uncompressed image.

We calculated the CR for various compression schemes dis-

cussed in Section 4. The image database used is the JRST

database which can be downloaded from [10]. It contains 154

nodule and non-nodule 8-bit Chest X-ray images with matrix

size of 2048x2048 pixels. We selected a subset containing 20

Chest X-ray images. 10 images are selected as our training

set while the other 10 images were used for testing the algo-

rithm. The experiments were repeated 10 times by randomly

changing the 20 images.

The CTW, CALIC, bzip2 and JPEG-LS algorithms were

applied on the test set as our benchmark lossless image

compression algorithms. We display in figures 2 and 3 the

histograms of 2 typical images before and after applying

PCA. The entropy for the original image (Fig. 2) was 4.83

and decreased to 2.35 for the image after PCA decorrelation.

We also show the histogram of the first eigen image (Fig.4),

which clearly proves the maximum variance that such an im-

age can model. Fig. 5 displays compression ratio for different

lossless image compression algorithms using both the Comp

and the PCAComp scenarios.

The compression ratios (CR) for CALIC, CTW, bzip2,

JPEG-LS were 0.18, 0.19, 0.24, 0.27, respectively. After ap-

plying our memory-assisted algorithm, the compression ratio

was improved by 17.79%, 27.67%, 14.90% and 14.84%, re-

spectively. As can be seen, similar trends are observed on the

compression ratios of the CTW, CALIC and JPEG-LS algo-

rithms. The CALIC, in particular, achieved a slightly better

CR than the others.

We also considered a number of other experiments on

different sets of training images with various sizes. Fig. 6
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presents the average compression ratio on 3 different sets of

training images including 10, 20 and 30 chest X-ray images.

As can be seen, there is only a minor improvement in com-

pression ratio when we increase the size of the training set

(number of images) from 10 to 30 images. The highest com-

pression efficiency is achieved for the CALIC and the JPLS

algorithms when used with proposed PCAComp algorithm.
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Fig. 2. Histogram of a single image.

Fig. 3. Histogram of a single image after applying PCA.

Fig. 4. Histogram of first eigenimage.

By applying PCA on top of CALIC and JPEG-LS, we ob-

tained gains of 16.97% and 14.55%, respectively. These re-

ported gains are for training sets of 10 images. The same trend

can be observed for the image set of 20 and 30. To further

analyze the energy compaction property of PCA, we display

in Fig. 7 the compression ratios (CR) of memory-assisted

techniques for CTW and CALIC using different number of

eigenimages. As expected, few PCA components are indeed

important in the reconstruction. Actually, our experiments

showed that more than 97% of the total energy is contained in

the first 5 eigenvalues (i.e.
∑

5

i=1∑
M
i=1

λi
> 0.95)
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Fig. 5. Compression ratio (CR) for traditional and memory-

assisted algorithms with different compression techniques.
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Fig. 6. Average compression ratio (CR) of the proposed algo-

rithm for different training set sizes of 10, 20 and 30.

6. CONCLUSION

We discussed a new method for lossless compression using

the concept of memory-assisted universal coding. The pro-

posed approach is well suited to compress large datasets of

medical images especially for recurrent usage. The algorithm

consists of a learning phase followed by a testing phase. In

the learning phase, PCA is performed on training images to

extract a set of eigenimages which are used to reconstruct the

different test images. The reconstructed images are simply

represented (coded) by low dimensional feature vectors. The

error (or residual) images are then compressed using tradi-

tional lossless compression algorithms such as the CALIC,

JPEG-LS, bzip2 and CTW algorithms. Our experimental re-

sults using the JRST database showed that the performance

of traditional lossless algorithms can be improved by an aver-

age of 20% using the proposed algorithm. The proposed con-

cept of using memory to enhance the performance of univer-

sal coders is expected to have a major impact in areas where

images exhibit high correlation.
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Fig. 7. Average compression ratio (CR) of memory assisted

compression algorithms for different number of eigenfaces.
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