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ABSTRACT

The objective of this paper is to study rate-distortion properties of

a quantized Bernoulli-Generalized Gaussian source. Such source

model has been found to be well-adapted for signals having a sparse

representation in a transformed domain. We provide here accurate

approximations of the entropy and the distortion functions evaluated

through a p-th order error measure. These theoretical results are then

validated experimentally. Finally, the benefit that can be drawn from

the proposed approximations in bit allocation problems is illustrated

for a wavelet-based compression scheme.

Index Terms— Rate-Distortion theory, entropy, quantization,

Bernoulli-Generalized Gaussian distribution, Lagrangian approach.

1. INTRODUCTION

Rate-Distortion (R-D) theory has attracted a considerable attention

in the information theory literature, especially in the area of data

compression [1]. For example, the current image and video coders

based on wavelets require the computation of the rate and distortion

functions to perform optimal rate allocation among all the wavelet

subbands [2]. In a transform coding context, the R-D performance

can be usually expressed from the individual rate and distortion func-

tions of the quantized subbands. Therefore, it becomes interesting to

efficiently compute the rate and distortion functions of the quantized

coefficients.

To this end, a simple empirical approach consists of quantizing the

wavelet coefficients and evaluating the resulting entropy and distor-

tion functions for different values of quantization steps. However,

this approach may be computationally intensive in the context of

bit allocation problems where many R-D points are required [3].

To overcome this drawback, André et al. proposed to select only

few R-D points and to interpolate between them using splines [3].

Moreover, numerical approaches were also developed by using dif-

ferent source models and quantizer characteristics. Indeed, the ex-

pression of the operational R-D function can be derived in the case

of exponential and Laplacian sources with absolute and squared er-

ror distortion measures [4], in the case of a uniformly distributed

source for both distortion criteria [5], and in the case of a Gaussian

source for squared error distortion [6]. Recent studies also consid-

ered the Laplace and Generalized Gaussian (GG) probabilistic mod-

els to compute the entropy and the distortion resulting from a uni-

form quantizer [7, 8]. In addition, it should be noticed that the well-

known R-D results developed by Gish and Pierce [9], which are only

valid at high bit rate (i.e small quantization steps), are useful in the

selection mode, in the context of H.264/AVC coding standard for ex-

ample [10]. Recently, some of us proposed approximations of the en-

tropy as well as asymptotic expressions of the distortion for memo-

ryless Generalized Gaussian sources [11] and Bernoulli-Generalized

Gaussian ones [12]. Note that these approximations have been de-

veloped in [12] under some assumptions about the distribution shape

parameter and the deadzone parameter of the quantizer, as discussed

at the end of Section 3.

With the objective of designing fast and efficient bit allocation meth-

ods, we will make in this paper a detailed study of the R-D func-

tions. More specifically, by considering a uniform scalar quanti-

zation (which is used in many embedded coders), we will develop

accurate approximations of both the entropy and distortion func-

tions. Unlike the results reported in the literature where only the

high and/or the low resolution behaviors are often investigated, our

results are valid for any given set of quantization parameters. More-

over, instead of using the GG model which was often used to model

the wavelet coefficients, we propose to employ a more general one,

known as the Bernoulli Generalized Gaussian (BGG) model, which

is more appropriate for modelling coefficients of a sparse represen-

tation.

The remainder of this paper is organized as follows. In Sections 2

and 3, we derive close approximations of the entropy and distortion

functions for quantized BGG source. We then show in Section 4

the interest of these approximations in the context of bit allocation

problems. Finally, some conclusions are provided in Section 5.

2. ENTROPY OF QUANTIZED BGG SOURCES

Let us first define the source and quantization models. In wavelet-

based transform coding applications, the source to be quantized cor-

responds to the J subbands which will be designated in the following

by Xj with j ∈ {1, . . . , J}. An appropriate distribution for mod-

elling the resulting coefficients is the BGG one whose probability

density function is given by

∀ξ ∈ R, fj(ξ) = (1− ǫj)δ(ξ) + ǫj f̃j(ξ) (1)

where ǫj ∈]0, 1] denotes the mixture parameter, δ is the Dirac distri-

bution and f̃j represents the probability density function for a GG

distribution with scale factor ωj ∈]0,+∞[ and shape parameter

βj ∈]0, 2]:

∀ξ ∈ R, f̃j(ξ) =
βjω

1/βj

j

2Γ(1/βj)
e−ωj |ξ|

βj

(2)
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where Γ is the gamma function. The differential entropy of such a

GG variable is given in [13] by

hβj
(ωj) = −

∫ ∞

−∞

f̃j(ξ) log2 f̃j(ξ) dξ = log2

(2Γ(1/βj)

βjω
1/βj

j

)
+

1

βj
.

During the quantization process, we employ a uniform scalar quan-

tizer with a quantization step qj , having a deadzone of size (2τj −
1)qj where τj > 1/2. Thus, for each input coefficient Xj,s, the

output of the quantizer Xj,s is expressed as

Xj,s = r0 = 0, if |Xj,s| <
(
τj −

1
2

)
qj , where τj > 1/2

and, for all i ∈ Z, Xj,s = ri,j ,

(if (τj + i− 3
2
)qj ≤ Xj,s < (τj + i− 1

2
)qj and i ≥ 1)

or (if (−τj + i+ 1
2
)qj < Xj,s ≤ (−τj + i+ 3

2
)qj and i ≤ −1),

where the reconstruction levels are given by

∀i ≥ 1, ri,j = −r−i,j = (τj + i− 1 + ζj)qj (3)

and ζj ∈ [−1/2, 1/2] is an ”offset” parameter used to adjust the

values of the reconstruction levels. We will not consider any satu-

ration effect. Note that the quantization rule corresponds often to

the case when ζj = 0. For example, this rule is used in many en-

coding techniques, like EBCOT [14], which have been developed in

wavelet-based image compression schemes.

Let us now focus on the entropy of the quantized variable Xj defined

by

Hfj (qj , ǫj) = −

∞∑

i=−∞

pi,j log2 pi,j (4)

where, for every i ∈ Z, pi,j = P(Xj,s = ri,j) is the probability of

occurrence of the reconstruction level ri,j .

Let Qa with a ∈ R
∗
+ be the normalized incomplete Gamma function

[15] which will be used to compute the approximation of the entropy:

∀ξ ∈ R, Qa(ξ) =
1

Γ(a)

∫ ξ

0

θa−1e−θdθ. (5)

In the following, we first provide an accurate approximation of the

entropy and then give the sketch of proof of this result.

Proposition 1. The entropy of the quantized BGG source is

Ĥfj (qj , ǫj) = Φ(p0,j , ǫj) + ǫjĤf̃j
(qj) (6)

with Φ(p0,j , ǫj) =−
(
1− ǫj(1− p0,j)

)
log2

(
1− ǫj(1− p0,j)

)

− ǫj(1− p0,j) log2 ǫj + ǫjp0,j log2 p0,j ,

and Ĥf̃j
(qj) = −p0,j log2 p0,j − 2p1,j log2 p1,j

+
(
hβj

(ωj)− log2 qj
)(
1−Q1/βj

(
ωj

(
τj +

1

2

)βj q
βj

j

))

+
ω

1/βj

j (τj +
1
2
)qj

Γ(1/βj)
e−ωj(τj+

1

2
)
βj q

βj
j . (7)

The error incurred in this approximation is such that

0 ≤ Ĥfj (qj , ǫj)−Hfj (qj , ǫj) ≤ 2ǫjqjC(βj , τj)f̃j
(
(τj +

1

2
)qj

)
,

with C(βj , τj) =





(
2τj+1

2τj−1

)1−βj

if βj < 1
(

2τj+2

2τj+1

)βj−1

if βj ∈ [1, 2].
(8)

Proof. We recall that the entropy of a quantized BGG random vari-

able distributed according to (1) is given by [12]:

Hfj (qj , ǫj) = Φ(p0,j , ǫj) + ǫjHf̃j
(qj) (9)

where Hf̃j
(qj) = −p0,j log2 p0,j − 2

∞∑

i=1

pi,j log2 pi,j (10)

is the entropy of a quantized GG random variable with probability

density function f̃j . In order to prove the desired result, it is enough

to show that

Hf̃j
(qj) = Ĥf̃j

(qj) + ∆ (11)

where 0 ≤ ∆ ≤ 2qjC(βj , τj)f̃j
(
(τj +

1

2
)qj

)
. (12)

To this end, depending on the βj values, two cases can be considered.

• The proof for the case when βj ∈ [1, 2] can be found in [12].

•When βj < 1, it can be checked that

0 ≤ −

+∞∑

i=2

pi,j log2 pi,j +

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ

+ log2 qj

∫ +∞

(τj+
1

2
)qj

f̃j(ξ)dξ ≤ I1 (13)

where I1 = βjωjqj

∫ +∞

(τj+
1

2
)qj

(ξ − qj)
βj−1f̃j(ξ) dξ

≤
βjω

1/βj

j qj

2Γ(1/βj)

(2τj − 1

2τj + 1

)βj−1

e−ωj(τj+
1

2
)
βj q

βj
j . (14)

Furthermore, it can be noticed that

2

∫ +∞

(τj+
1

2
)qj

f̃j(ξ) log2 f̃j(ξ)dξ

= −hβj
(ωj)

(
1−Q1/βj

(
ωj

(
τj +

1

2

)βj q
βj

j

))

−
ω

1/βj

j (τj +
1
2
)qj

Γ(1/βj)
e−ωj(τj+

1

2
)
βj q

βj
j . (15)

After noticing that pi,j can be easily expressed by using the incom-

plete Gamma functions, combining (13) and (14), and using (10)

and (15), we obtain the approximation formula of the entropy of the

quantized GG random variable, given by (11)-(12). Finally, the ap-

proximation formula for the discrete entropy of the quantized BGG

random variable can be easily deduced from (9).

Taking into account the local behaviour of the incomplete

Gamma function around 0 (see [16]), it can be checked that, at

high bitrate (i.e. when qj → 0),

Ĥfj (qj , ǫj) = Hǫj + ǫj(hβj
(ωj)− log2 qj)+O(qj log2 qj) (16)

where Hǫj = −ǫj log2 ǫj − (1 − ǫj) log2(1 − ǫj) is the entropy

of a Bernoulli random variable with parameters (1 − ǫj , ǫj). Note

that (16) corresponds to the classical high rate approximation of the

entropy, known as Bennett’s formula [9]. As shown by Fig. 1(a), the

latter formula leads to a good approximation of the entropy function

Hfj only for small quantization steps, whereas Proposition 1 yields

an accurate approximation for any set of quantization parameters.
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Fig. 1. In (a) (resp. (b)): standard high rate approximation plotted

in circle green symbol and new approximation developed in Propo-

sition 1 (resp. Proposition 2) plotted with star red symbol, of the

entropy Hfj (resp. distortion dj with pj = 2) plotted in solid blue

line versus log2 qj . The parameters of the BGG source are ǫj = 0.8,

βj = 0.75 and ωj = 1.

3. DISTORTION OF QUANTIZED BGG SOURCES

We focus now on the distortion function which can be evaluated

through the pj-th order moment of the quantization error as follows

[12]:

dj(qj , ǫj) = E[|Xj,s −Xj,s|
pj ]

= 2ǫj
(∫ (τj−

1

2
)qj

0

ξpj f̃j(ξ)dξ

+

+∞∑

i=1

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pj f̃j(ξ)dξ

)
,

where pj ≥ 1 is a real exponent. Thus, in the usual case when

pj = 2, the distortion represents the standard mean square error cri-

terion.

In the following, we first provide in Proposition 2 an accurate ap-

proximation of the distortion and then give some details and com-

ment this result.

Proposition 2. An approximation of the distortion of the quantized

BGG random variable is

d̂j(qj , ǫj)

= 2ǫj
(ω

−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)
Q(pj+1)/βj

(
ωj(τj −

1

2
)βj q

βj

j

)

+

∫ (τj+
1

2
)qj

(τj−
1

2
)qj

|ξ − r1,j |
pj f̃j(ξ)dξ

+
νjq

pj
j

2(pj + 1)

(
1−Q1/βj

(
ωj(τj +

1

2
)βj q

βj

j

)))
(17)

where the approximation error is such that

|dj(qj , ǫj)− d̂j(qj , ǫj)| ≤ 2ǫj
νjq

pj+1

j

pj + 1
f̃j
(
(τj +

1

2
)qj

)
. (18)

Proof. Knowing that

∫ (τj−
1

2
)qj

0

ξpj f̃j(ξ)dξ =
ω
−pj/βj

j Γ((pj + 1)/βj)

2Γ(1/βj)

×Q(pj+1)/βj

(
ωj(τj −

1

2
)βj q

βj

j

)
, (19)

it can be deduced that the approximation error is given by

dj(qj , ǫj)− d̂j(qj , ǫj) = 2ǫj
( +∞∑

i=2

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ−ri,j |
pj f̃j(ξ)dξ

−
νjq

pj
j

2(pj + 1)

(
1−Q1/βj

(
ωj

(
(τj +

1

2
)qj

)βj

)))
. (20)

In addition, we have the following inequalities:

∀i ≥ 1, f̃j
(
(τj + i−

1

2
)qj

) ∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ

≤

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pj f̃j(ξ)dξ

≤ f̃j
(
(τj + i−

3

2
)qj

) ∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ (21)

with

∫ (τj+i− 1

2
)qj

(τj+i− 3

2
)qj

|ξ − ri,j |
pjdξ =

νjq
pj+1

j

pj + 1
. (22)

∀i ≥ 1,

∫ (τj+i+ 1

2
)qj

(τj+i− 1

2
)qj

f̃j(ξ)dξ ≤ qj f̃j
(
(τj + i−

1

2
)qj

)
(23)

∀i ≥ 2, qj f̃j
(
(τj + i−

3

2
)qj

)
≤

∫ (τj+i− 3

2
)qj

(τj+i− 5

2
)qj

f̃j(ξ)dξ. (24)

By combining (19) and (21)-(24), it can be checked that (17) and

(18) hold.

Two remarks can be made about the developed approximation

of the distortion. First, when qj → 0, we find the well-known high

rate approximation of the distortion:

d̂j(qj , ǫj) = ǫj
νj

pj + 1
q
pj
j (1 +O(qj)) (25)

Secondly, when pj = 2, the integral in (17) can be expressed using

the incomplete Gamma function. In this case, the approximation

formula of the distortion takes the more tractable form:

d̂j(qj , ǫj) = ǫj
(
ω
−2/βj

j

Γ(3/βj)

Γ(1/βj)
Q3/βj

(
ωj

(
(τj +

1

2
)qj

)βj
)

− 2ω
−1/βj

j

Γ(2/βj)

Γ(1/βj)
r1,j

(
Q2/βj

(
ωj

(
(τj +

1

2
)qj

)βj
)

−Q2/βj

(
ωj

(
(τj −

1

2
)qj

)βj
))

+ r21,j

(
Q1/βj

(
ωj

(
(τj +

1

2
)qj

)βj
)

−Q1/βj

(
ωj

(
(τj −

1

2
)qj

)βj
))

+
νj
3
q2j

(
1−Q1/βj

(
ωj

(
(τj +

1

2
)qj

)βj
)))

. (26)

Fig. 1(b) shows that the obtained approximation of the distortion in

Proposition 2, leads to good results while the standard formula (25)
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is only precise at high bitrate.

It is important to note that Propositions 1 and 2 are useful in practice

since they allow to compute fast and accurate approximations of the

entropy and distortion functions for any given set of quantization

steps. Moreover, compared with the approximation results provided

in [12], the main contributions of this paper can be summarized as

follows. First, in [12], the βj exponent is restricted to take its values

in [1, 2], whereas it can now have values lower than 1, which is more

realistic for modelling sparse sources. Then, the deadzone parameter

τj was set to 1 in [12] whereas the theoretical expressions are here

valid for any value of τj > 1
2

. This can be useful in practice since

in JPEG2000, the different subbands can be parameterized to have

different deadzone sizes. Finally, only asymptotic expressions of the

distortion are given in [12] whereas an accurate approximation of

this function is derived in this paper for any quantization parameter.

4. APPLICATION TO A BIT ALLOCATION PROBLEM

The developed rate-distortion results can be useful in the context of

bit allocation in transform-based coding applications. In this case,

the objective is to distribute an available budget of bits among the

different subbands resulting from a wavelet decomposition. To this

end, the basic idea behind the bit allocation procedure consists of

minimizing the distortion subject to a constraint on the global bi-

trate.

To address this problem, standard Lagrangian optimization tech-

niques have been widely used in the literature [3, 17, 18]. Such

techniques are based on two steps. The first one aims at empir-

ically computing the R-D curves of the different subbands, and

then resorting to an iterative method to find the optimal bitrate for

each subband [19]. As an example, we focus in this section on

the improved version of these techniques which has been recently

proposed in [3]. Thus, to illustrate the interest of the developed R-D

results, we have implemented this method by focusing on the first

step and considering the following three cases:

• In the first one (designated in Fig. 3 by “Lagrangian approach-1”),

the R-D points are empirically computed [3]. It is important to note

that the R-D curve resulting from this approach is considered as

the reference one which should be very close to that obtained from

accurate rate and distortion functions.

• In the second case (designated in Fig. 3 by “Lagrangian approach-

2”), the R-D points are computed by using the standard high rate

approximations [9] given by Bennett’s formula (16) and (25).

• In the third one (designated in Fig. 3 by “Lagrangian approach-

3”), the R-D points are evaluated according to the approximations

proposed in Propositions 1 and 2.

These results are obtained on the “Einst” image, displayed in Fig. 2,

by using a 9/7 wavelet transform carried out over three resolution

levels, and setting the deadzone parameter τj to 2. As shown by

Fig. 3, using only high rate approximations of the entropy and

distortion functions affects significantly the standard Lagrangian

optimization technique [3] and leads to a large difference between

“Lagrangian approach-1” and “Lagrangian approach-2”. In turn,

the behavior of the Lagrangian optimization technique based on the

developed approximation results gets much closer to that based on

the empirical procedure.

Fig. 4 illustrates the R-D performance for synthetic wavelet sub-

bands generated according to (1). The parameters of the BGG model

of the different subbands are set to those obtained on the “Einst”

image after applying the 9/7 wavelet transform. It can be noticed

that the two approaches lead to the same optimal rate-distortion

points. This observation confirms the fact that the small errors,

obtained in Fig. 3 between the two curves produced by “Lagrangian

approach-1” and “Lagrangian approach-3”, may be accounted for

by the modelling error of the wavelet coefficients.

Finally, we should note that using an Intel Core 2 (3.2 GHz) com-

puter with a Matlab 2013 implementation, the generation of the R-D

curves for the different subbands takes about 5 seconds (resp. 2

seconds) when the empirical (resp. proposed) computation strategy

is applied.

5. CONCLUSION

In this paper, we have proposed accurate approximations of the en-

tropy and distortion functions for a quantized BGG source. Such

approximation formulas present two advantages. First, they allow

us to efficiently compute these functions for any given value of the

quantization parameter. Secondly, these kinds of approximations can

be useful to design advanced bit allocation algorithms [20]. The in-

terest of the developed results has been shown in the context of bit

allocation for a transform-based coding application.

Fig. 2. “Einst” image.
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