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ABSTRACT
In this paper, we propose a no-reference quality assessment
measure for high efficiency video coding (HEVC). We an-
alyze the impact of network losses on HEVC videos and the
resulting error propagation. We estimate channel-induced dis-
tortion in the video assuming we have access to the decoded
video only without access to the bitstream or the decoder. Our
model does not make any assumptions on the coding condi-
tions, network loss patterns or error concealment techniques.
The proposed approach relies only on the temporal variations
of the power spectrum across the decoded frames. We vali-
date our proposed quality measure by testing it on a variety of
HEVC coded videos subject to network losses. Our simula-
tion results show that the proposed model accurately captures
channel-induced distortions. For the test videos, the correla-
tion coefficients between the proposed measure and the full-
reference SSIM values range between 0.70 and 0.80.

Index Terms— video quality monitoring, high efficiency
video coding (HEVC), temporal distortion propagation, video
streaming, network losses

1. INTRODUCTION

The Joint Collaborative Team on Video Coding (JCT-VC) ear-
lier this year completed the final draft for the new standard
for video coding, high efficiency video coding (HEVC) [1].
Furthermore, the telecommunication standardization sector of
the International Telecommunication Union (ITU-T) has ap-
proved HEVC as one of its standards (H.265) [2]. HEVC
has double the coding efficiency of H.264/MPEG-4 AVC and
supports up to 8K ultra high definition (UHD) videos [3, 2].
Moreover, HEVC introduces new coding tools and features to
facilitate higher compression gain.

The paramount coding performance of HEVC comes at
the expense of a more complex encoding operation compared
with AVC. HEVC introduces the coding unit tree (CTU)
structure which allows more flexibility for coding, transform,
and prediction modes [3]. Furthermore, HEVC employs an
open Group of Picture (GOP) format in which inter-coded

pictures are used more frequently than AVC to allow higher
compression gain. These features, however, make the bit-
stream and the decoded sequence more sensitive to errors and
losses due to the higher level of data dependency. This, in
turn, introduces more challenges in terms of video quality
assessment and monitoring, error concealment, etc. To this
end, we investigate in this work the impact of channel er-
rors or losses on the fidelity of the decoded HEVC video by
estimating the channel-induced distortion.

The problem of quality assessment for streamed video se-
quences has been recently addressed in several papers in the
literature [4, 5, 6, 7, 8]. In [4], the authors measure the subjec-
tive score of video quality by proposing a video quality metric
based on features obtained from the packet-headers of the bit-
stream. Staelens et al. [5] use genetic programming symbolic
regression to formulate a no-reference bitstream-based video
quality metric. De Simone et al. [6] report the performance
of their subjective quality assessment campaign of the HEVC
standard involving 494 test subjects. The authors in [7] test
the performance of various full-reference quality metrics on
4k UHD videos. This work shows that PSNR, VSNR, SSIM,
MS-SSIM, VIF, and VQM metrics were accurate in distin-
guishing different quality levels for the same content. In [8],
the feasibility of the HEVC standard for UHD broadcasting
services is examined. The authors report their results and
analysis of subjective quality assessment of 4k-UHD HEVC
videos. The work herein addresses the objective quality as-
sessment of streamed HEVC videos subject to network losses
with access only to the decoded videos.

In this paper, we propose a no-reference video quality
measure for HEVC videos. We begin by examining the cod-
ing conditions in HEVC and the impact of network losses on
the decoded video. We show that network losses has a more
severe impact on HEVC videos compared with AVC videos.
We then introduce a no-reference distortion measure, which
exploits only the temporal variation of the spectral density
between the frames. One of the contributions of this work is
that the proposed approach does not make any assumptions
on the concealment technique, network conditions or coding
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parameters. It blindly operates on the decoded video after
the decoder. We argue that the change in the spectral density
between frames can pinpoint the amount of distortion in the
frames.

The rest of this paper is organized as follows. In section 2,
we illustrate the significant impact of network losses on an
open GOP. We then explain our mathematical model to es-
timate the channel-induced distortions, which operates in the
frequency domain. Section 3 details the simulations setup and
test sequences used in the experiments herein, followed by
the results and analysis of the model validation experiments.
Finally, section 4 concludes the paper and outlines future di-
rections of this work.

2. NO-REFERENCE VIDEO QUALITY
ASSESSMENT

In this section, we begin by explaining the new coding struc-
ture in HEVC and the impact of network errors or losses un-
der these coding conditions. Next, we illustrate our proposed
no-reference video quality metric and the intuition behind it.
We note that our approach operates only on the decoded video
without making any assumptions about the encoding config-
urations, error concealment strategy or network conditions.

2.1. Error Propagation in an Open GOP Structure

The design of HEVC standard included many new features
to efficiently enable random access and bitstream splicing.
Many functionalities such as channel switching, seeking op-
erations, and dynamic streaming services require a good sup-
port of random access. In contrast to H.246/MPEG-4 AVC,
HEVC employs an open GOP operation. In this format, a new
clean random access (CRA) picture syntax is used wherein an
intra-coded picture is used at the location of random access
point (RAP) to facilitate efficient temporal coding [3]. The
intra period varies depending on the frame rate to introduce
higher compression gain [9]. This coding structure is shown
in Fig. 1. In this figure, frames are represented using circles
and the order at the bottom of the figure is the picture or-
der count (POC). The sequence starts with an I-frame (POC
0) which is followed by a P-frame (POC 8) and 7 B-frames
(POCs 2 through 7) to form an open GOP of size 8. The next
open GOP starts with the P-frame (POC 8) from the previ-
ous GOP (frames 8-16 in Fig. 1). This pattern continues until
the end of the intra period. The arrows in the figure represent
decoding dependencies.

In HEVC, favouring inter-coding over intra-coding is
more subtle than in AVC. As a result, HEVC imposes a very
high data dependency between the frames. Henceforth, the
impact of channel-induced errors on certain frames that po-
tentially propagate to the end of the GOP is more significant
in HEVC than in AVC. Fig. 2 shows an example of the im-
pact of loosing the Network Abstraction Layer (NAL) unit
corresponding to frame 8 and replacing it with the temporally

4.2 Prediction

Frames of video are coded using Intra or Inter prediction. Figure 6 shows a sequence of coded 
video frames or coded pictures. The first picture (0) is coded using Intra prediction only, using 
spatial prediction from other regions of the same picture. Subsequent pictures are predicted from 
one, two or more reference pictures, using Inter and/or Intra prediction for each Prediction Unit 
(PU). The prediction sources for each picture are indicated by arrows.

0
(IDR)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pictures

Bits per picture

Figure 6: Sequence of coded pictures (source: Parabola Research)

Each Coding Unit (CU) is partitioned into one or more Prediction Units (PUs), each of which is 
predicted using Intra or Inter prediction.

Intra prediction: Each PU is predicted from neighbouring image data in the same picture, using DC 
prediction (an average value for the PU), planar prediction (fitting a plane surface to the PU) or 
directional prediction (extrapolating from neighbouring data).

Inter prediction: Each PU is predicted from image data in one or two reference pictures (before or 
after the current picture in display order), using motion compensated prediction. Motion vectors 
have up to quarter-sample resolution (luma component). 

Figure 7 shows two examples of Prediction Units. The CTU in the centre of the Figure is predicted 
using a single 64x64 PU. All the samples in this PU are predicted using the same motion 
compensated inter prediction from one or two reference frames. Shown on the right is an 8x16 PU, 
which is part of the prediction structure for a 32x32 CU.
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Fig. 1. The open GOP structure in HEVC coded videos [10]
.
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Fig. 2. The impact of loosing frame 8 on the SSIM values of
the GOP for BQMall sequence; frame rate is 60 frames per
second.

closest available frame at the decoder, which is frame 0 in
this example (See Fig. 1). In our simulations and tests, we
abide by the recommended encoding format wherein every
frame is taken as a single slice which is encapsulated in a
separate NAL unit [11]. Fig. 2 shows that the channel loss
under these coding conditions propagates until a new I-frame
is encountered, which is frame 64 in this example.

Under the assumption that we do not have access to the
decoder and we only have access to the decoded sequences
as explained in section 1, we do not have knowledge of how
losses have propagated to other frames. Hence, in order to es-
timate these distortions without any reduced or full reference
information, we can only rely on the spatial and temporal fea-
tures of the decoded video.

2.2. No-Reference Distortion Estimation

In this section, we explain our proposed no-reference video
quality assessment metric. The proposed approach relies on
the fact that any channel-induced distortion will result in a
temporal inconsistency between frames within a GOP. We
measure this inconsistency through the temporal variation of
the Power Spectral Density (PSD) across frames. Let fk and
fk−1 be the frame of interest and previous frame, respectively.
Furthermore, let Pk and Pk−1 denote their respective PSDs:

Pk [v, u] =
1

MN

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

fk [m,n] e−j2π(um+vn)

∣∣∣∣∣
2

(1)
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where k is the temporal index of the frame in the received
video, M ×N is the resolution of the video, and v and u are
the discrete frequencies. We next divide the PSD, Pk, into
non-overlapping blocks of size L × L. We refer to the PSD
of block i in frame fk as Bk(i). Similarly, Bk−1(i) is the
PSD of block i in frame fk−1. For every block, we estimate
the channel-induced distortion by measuring the energy dif-
ference in the temporal domain as follows:

∆Bk(i) = Bk(i)−Bk−1(i). (2a)

We next measure the variation of the energy differences
within block i in frame fk as follows:

Gk(i) =
max [∆Bk(i)]√

Var [∆Bk(i)]
(2b)

where max [·] is the maximum value in block ∆Bk(i), Var [·]
is the variance of the values in block ∆Bk(i), andGk(i) is the
ratio of the maximum PSD value in block i to the standard
deviation of the PSD of the block. Next, we compute the
negative mean of Gk(i), denoted by Dk, taken over all the
spatial indices i in frame k as follows:

Dk = −E [Gk(i)] (2c)

where E [·] is the expectation operation taken over the spatial
indices, i’s, for all the blocks. It should be noted that while
Bk(i) and ∆Bk(i) are square matrices, Dk(i) and Dk are
scalars. Furthermore, the obtained vector for the whole se-
quence of Dk values is normalized to obtained D̃k. Finally,
we amplify the the estimated distortion as follows:

D̂k = D̃k · σs (k) (2d)

where σs (k) is the standard deviation of the vector
[
D̃k−s, · · ·

D̃k, · · · , D̃k+s

]
. s is the window size, which is determined

empirically.
The goal of the operation in (2d) is to scale the mea-

sured distortion in (2c) within the context of its neighbour-
ing frames. If the variance of the measured quantity in (2c)
is high, this indicates high variations in the PSD levels from
one frame to another, which indicates higher error likelihood
within the GOP. In our experiments, s = 5 and the block size
is L× L = 16× 16 pixels.

Let us consider a scenario where a frame, k, has been lost
and replaced by its predecessor in display order. For this par-
ticular frame, (2c) produces Dk = 0. Since −∞ < Dk ≤ 0,
the normalized value will have values 0 ≤ D̃k ≤ 1.

3. EXPERIMENTS AND RESULTS

In this paper, all the experiments and tests follow the recom-
mendations published by JCT-VC for common test conditions
for HEVC [9]. We use a subset of six difference video se-
quences in our experiments. All the video sequences were

Sequence Resolution Intra FPS Number of
Period Frames

RaceHorses 832x480 24 30 300
BasketballDrill 832x480 48 50 500

PartyScene 832x480 48 50 500
BQMall 832x480 64 60 600

BasketballDrive 1920x1080 48 50 500
ParkScene 1920x1080 24 24 240

Table 1. Test Video Sequences

Fig. 3. Spatial information (SI) versus temporal infomration
(TI) indices for the selected sequences [13].

coded using the HEVC standard using the test model version
(HM 12.0) [11]. The coding was done using the main random
access profile. Next we detail the coding parameters and the
obtained results.

3.1. Coding Conditions and Simulations Parameters

Table 1 summarizes the sequences used in our experiments
and the encoding parameters. We fix the initial Quantiza-
tion Parameters (QPs) value to 32. For the error patterns, we
use the the loss patterns in the proposed NAL unit loss soft-
ware [12]. The results shown in this paper are performed with
the 10% loss pattern, which results in 5%-7% loss rate in the
tested sequences. In our experiments, only inter-coded frames
are subject to losses. Furthermore, Fig. 3 shows the spatial in-
formation (SI) and temporal information (TI) indices on the
luminance channel for the selected sequences, as per the rec-
ommendation in [13]. The higher the score on the SI or the TI
scale, the more complex the spatial and temporal features of
the test sequence. In this context, we diversify the selection
of sequences to validate our model under different temporal
and spatial features.

3.2. Results and Analysis

Figs. 4 and 5 show the calculated measures for RaceHorses
and PartyScene sequences, respectively. From the two
plots, we notice that the value of D̂k peaks at the location
of lowest SSIM score. These points correspond to the lost
frames, which were replaced by previous frames during the
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Fig. 4. The proposed no-reference quality measure com-
pared with the obtained SSIM for the corrupted and error-free
RaceHorses sequences.

concealment process. In this case, Dk ≈ 0, as alluded in
Section 2.2. This value decreases for the following depen-
dent frames since only a subset of the CTUs in these frames
depend on the lost frames.

Sequences Correlation Coefficients
RaceHorses 0.79

BasketballDrill 0.76
PartyScene 0.77
BQMall 0.70

BasketballDrive 0.80
ParkScene 0.77

Table 2. Correlation between the estimated frame distortion,
Dk, and the full-reference SSIM values.

In order to validate the proposed distortion model, we
calculate the correlation coefficients between the estimated
distortion and the measured SSIM of the corrupted sequence
compared with the error-free one. Table 2 summarizes the ex-
perimental results for all the tested sequences. Note that the
proposed model correlates well with the SSIM values. The
correlation coefficients for all test sequences range between
0.70 and 0.80. In particular, the proposed approach works
well for the sequences with low temporal complexity such
as the ParkScene video sequence. In this case, the major-
ity of the changes in the PSDs between consecutive frames
is due to the channel-induced distortion. Furthermore, our
distortion measure works well for sequences with medium or
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Fig. 5. The proposed no-reference quality measure com-
pared with the obtained SSIM for the corrupted and error-free
PartyScene sequences.

low temporal complexity, such as BasketballDrive and
BasketballDrill.

The correlation, however, tends to drop for the case of
BQMall due to the complex nature of localized motion in
the video, as can be observed from the TI index in Fig. 3.
Nonetheless, this problem can be overcome by incorporating
spatial inconsistency, which is beyond the scope of this paper.
Our approach still performs fairly well for the RaceHorses
sequence, which is close the BQMall in term of spatial and
temporal features.

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a new no-reference video quality
measure to estimate the channel-induced distortion due to net-
work losses. The proposed technique does not make any as-
sumption about the coding conditions or video sequence. It
rather explores the temporal changes between the frames, in
the frequency domain, to estimate the the visual inconsis-
tencies. We validate our approach by testing the proposed
technique on various sequences and calculate the correlation
coefficients with the full-reference SSIM values. Our exper-
iments show that the proposed technique captures the erro-
neous frames due to both network losses and error propaga-
tion. In future work, we plan to improve the accuracy of the
distortion estimation by including other features.
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