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ABSTRACT
In this paper, a novel image blocky artifact removal scheme
based on low-rank matrix recovery is proposed. The prob-
lem of suppressing blocky artifacts is formulated as recover-
ing a low-rank matrix from corrupted observations. During
the deblocking processing, we do not directly recover the w-
hole clean image but only its high-frequency component and
then synthesize the clean image by incorporating the low-
frequency component of blocky image. To take advantage
of the low-rank matrix recovery paradigm, we first cluster the
similar patches of the high-frequency component of image via
local pixel clustering, then the clean high-frequency compo-
nent of image is recovered by formulating an optimization
problem of the nuclear norm and `1-norm. The experimental
results show that the proposed algorithm can achieve compet-
itive performance in terms of both quantitative and subjective
quality.

Index Terms— blocky artifact, sparse representation, low-
rank matrix recovery, patch based.

1. INTRODUCTION

Blocky artifact is a common problem in image coding and
video coding based on block-based discrete cosine transform
(BDCT) [16] and often occurs along the block boundaries in
compressed images and seriously degrades the subjective im-
age quality [15, 17], especially at a low bit rate. In order to at-
tenuate these artifacts and achieve superior perceptual image
quality, many postprocessing techniques, named image de-
blocking, have been proposed in the literature [4, 9, 10, 13].
Dabov et al. [4] proposed a collaborative image denoising
scheme by patch matching and sparse 3D transform, which
is called the BM3D algorithm, achieving pleasing denoising
performance. Sun and Cham [13] modeled an image as a
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high order Markov random field based on the fields of experts
framework and then deblocked the blocky image by solving
an inverse problem.

Recently, sparse representation strategy has been wide-
ly studied to solve image restoration [8], especially on im-
age denoising [1, 6]. In terms of sparse representation, im-
age patches can be represented as a linear combination of a
few atoms from a certain set, called dictionary D. That is,
each image patch is well approximated by the linear combi-
nation of a small subset of patches in the dictionary. Jung
et al. [8] proposed a new image deblocking method for B-
DCT compressed images based on sparse representation, in
which a general dictionary is trained by K-singular value de-
composition (K-SVD) algorithm. Yeh et al. [3] proposed a
self-learning-based image/video deblocking framework via s-
parse representation, where a morphological component anal-
ysis (MCA) is used for image decomposition problem.

One of conventional ways to remove image noise is to ap-
ply the traditional principal component analysis (PCA), how-
ever PCA is not robust in removing the gross errors or out-
liers. To overcome this drawback, Candes et al. [2] proposed
the so-called robust PCA by utilizing a convex program that
guarantees to recover a low-rank matrix despite gross sparse
errors. Recently, motivated by the advance of sparse repre-
sentation and robust PCA, Ji et al. [7] proposed a new video
restoration scheme based on the joint sparse and low-rank ma-
trix approximation. Ren et al. [12] presented an image block-
ing artifacts reduction approach via patch clustering and low-
rank minimization, however the effectiveness of the approach
needs to be further investigated.

Actually, a blocky artifact is a particular class of data er-
ror that is in general caused by the quantization processing in
lossy data compression. That is, the blocky artifacts can be
seen as outliers occurring in compressed images. These out-
liers may significantly degrade the performance of the men-
tioned denoising methods. Our goal in this paper is to devel-
op a novel deblocking approach which is able to effectively
recover the clean information from corrupted data. Differen-
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t from the existing methods, we do not directly recover the
whole clean image from the blocky image but only its high-
frequency component and then synthesize the clean image by
integrating with the low-frequency component of the blocky
image. The recovery of high-frequency image component is
formulated as a problem of minimizing the nuclear norm of a
matrix with `1-norm constraint [5], which can be efficiently
solved by the Augmented Lagrange Multiplier (ALM) algo-
rithm [11].

2. NOTATION

Denote by xij the (i, j)-th entry of matrix X ∈ Rm×n and

‖X‖1 =
m∑
i=1

n∑
j=1

|xij | the `1-norm of a matrix. Let σi be the

non-negative singular values of X and the nuclear norm of X

is defined as ‖X‖∗ =
r∑
i=1

σi. As usual, ‖X‖2F is the matrix

Frobenius norm.

3. IMAGE DEBLOCKING BASED ON LOW-RANK
MATRIX RECOVERY

Our proposed scheme is shown in Fig. 1. The critical step is to
recover the true high-frequency component of the image from
a single blocky image. Specifically, our approach is com-
posed of two steps. First, the blocky image is decomposed
into the low-frequency and the high-frequency components.
Then, the high-frequency component including the blocky ar-
tifact is recovered by solving an optimization problem of the
nuclear norm and `1-norm constraint. In the end, the de-
blocked image is obtained by combining the low-frequency
component with the recovered high-frequency one.

Fig. 1: Flowchart of our proposed deblocking scheme.

3.1. Problem Statement

It is easy to separate an image into its low-frequency and
high-frequency components. The most basic information of

the image with blocky artifacts can be retained inside its low-
frequency component while the blocky artifacts and the other
edge/texture information are left in its high-frequency com-
ponent. This procedure can be illustrated in Fig. 2. The
procedure demonstrates that a high quality image can be re-
covered by synthesizing the low-frequency component of a
blocky image and its high-frequency component of its clean
image. When the blocky artifacts lying in the high-frequency
component of blocky image can be well suppressed, the de-
blocking task can be handled successfully. Thus, our task for
deblocking is transferred into recovering the high-frequency
component information from a single blocky image. For sim-
plicity, unless stated otherwise, we shall assume hereafter that
the term image refers to its high-frequency component.

(a)

(b)

Fig. 2: Demonstration of using the true high-frequency
image component for deblocking. a) deblocked image (left)
and image with blockiness (right); b) high-frequency part of

clean image (left) and blocky image (right).

3.2. Patch Matching Based on Local Pixel Clustering

Let Y be a blocky image, which is composed of non-
blocky component X and the blocky artifact one E, i.e.,
Y = X + E. Consider a patch pj = [pj1, ..., pjm]T

centered at pixel j, then we search for N affinity patches
{pnj = [pnj1, ..., p

n
jm]T }Nn=1 that are similar to pj in the w-

hole image. The m × N patch matrix Yj is obtained by
arranging each patch vector pnj into columns as follows,

Yj = [p1
j
, ...,pNj ] (1)

Thus, we can rewrite the image model into the form of patch
matrices,

Yj = Xj + Ej (2)

2016



Generally, the matrix constituted by the affinitive patches will
have low-rank properties representing the underlying struc-
ture of the image. Thus, we apply block matching based
on local pixel clustering to discriminate the similar patches.
Assume that pixel j is centered in a K × K window, i.e.,
m = K2. We want to find the similar patches in the train-
ing window L×L (L > K) containing the K ×K window.
Thus, there are in total (L−K + 1)

2 training samples for the
patch centered at pixel j . Classifying the training samples can
be easily computed as following,

Errn (j) =
∥∥pj − pnj

∥∥2 =
1

m

m∑
i=1

(
pji − pnji

)2
(3)

In this paper, we set a threshold εσ2, in which σ is known as
the standard deviation of artifacts, and the pnj is picked out as
the similar patch if Errn (j) < εσ2 is satisfied.

3.3. Modeling Corruption as Sparse Error and Recover-
ing

Mathematically, if we stack the patches from an image as col-
umn vectors to form a new matrix Y , then Y should be ap-
proximated by a low-rank matrix X and the residual part E
can be modeled as sparse noise with most of its entries be-
ing zero. The low-rank matrix X representing the principal
components is exactly the clean patches we want to restore
from the blocky image Y . If Yj ∈ Rm×N is given as equa-
tion (1), we can surely find a sparse matrix Ej such that Xj

has the lowest rank with high possibility. Thanks to the re-
cent advances in the area of low-rank matrix recovery, we can
achieve the goal by solving the following optimization prob-
lem for deblocking,

min
Xj ,Ej

∥∥Xj

∥∥
∗ + λ

∥∥Ej∥∥1 s.t. Yj = Xj + Ej (4)

The above minimization problem will recover the low-
rank matrix X from the blocky artifact image Y in which
there exists not only sparse error but also quantization noise.
As both ‖·‖∗ and ‖·‖1 in (4) are convex, then the ALM
method [11] can be easily adopted to efficiently solve prob-
lem (4). For problem (4), the augmented Lagrangian yields,

L(Xj , Ej , η, µ) = ‖Xj‖∗ + λ ‖Ej‖1 + 〈η, Yj −Xj − Ej〉

+
µ

2
‖Yj −Xj − Ej‖2F (5)

where η ∈ Rm×N is a Lagrange multiplier matrix, µ > 0,
〈·, ·〉 represents the matrix inner-product.

The basic ALM algorithm can be given via iteratively es-
timating both the Lagrangian multiplier and the optimal solu-
tion, (

Xk+1
j , Ek+1

j

)
= argmin

Xj ,Ej

L(Xj , Ej , ηk, µk)

ηk+1 = ηk + µk (Yj −Xj − Ej)
µk+1 = ρ · µk

(6)

where {µk} is a monotonically increasing positive sequence
(ρ > 1). For the first subproblem of Eq (6), the solution is
obtained by performing an alternating minimization process:

Ek+1
j = argmin

E
λ ‖E‖1 − 〈ηk, E〉+

µk

2

∥∥Yj −Xk
j − E

∥∥2
F

Xk+1
j = argmin

X
‖X‖∗ − 〈ηk, X〉+

µk

2

∥∥Yj −X − Ek+1
j

∥∥2
F

(7)
Now, the solution for Ek+1

j is achieved by applying the
shrinkage operator,

Ek+1
j = Sλµ−1

k

(
Yj −Xk

j + µ−1
k ηk

)
(8)

where the shrinkage operator is defined as

Sα(X) = (|X| − α)+sgn(X).

And the solution for Xk+1
j is iteratively obtained based on

Accelerated Proximal Gradient(APG) [11] method as fol-
lows,

(Ui, Si, Vi) = SVD
(
Yj + µ−1

k ηk − Ej + Zi
)

Xk+1
j = UiSµ−1

k
[Si]V

T
i

ti+1 =
(
1 +

√
1 + 4t2i

)
/2

Zi+1 = Xk+1
j + ti−1

ti+1

(
Xk+1
j −Xk

j

) (9)

Therefore, the main procedure of the optimization solving al-
gorithm using ALM is summarized as follows.

Algorithm 1: Deblocking via Low-rank Matrix Recov-
ery

Input: Yj ∈ Rm×n, λ > 0, ρ > 1
Initialization: η1 = 0;X1

j = 0;E1
j = 0;µ1 = 1; ρ =

1.5;λ = 1/
√

max (m,n).
Output: (X∗

j , E
∗
j ) = (Xk

j , E
k
j )

While not converged (k = 1, 2, ...)do
Ek+1
j = Sλµ−1

k

[
Yj + µ−1

k ηk −Xk
j

]
,

t1 = 1, Z1 = Xk
j

While not converged (i = 1, 2, ...)do
(Ui, Si, Vi) = SVD

(
Yj + µ−1

k ηk − Ek+1
j + Zi

)
,

Xk+1
j = UiSµ−1

k
[Si]V

T
i ,

ti+1 =
(
1 +

√
1 + 4t2i

)
/2,

Zi+1 = Xk+1
j + ti−1

ti+1

(
Xk+1
j −Xk

j

)
End while
ηk+1 = ηk + µk (Yj −Xj − Ej) ,
µk+1 = ρ · µk,
End while

3.4. Estimation of Threshold

Actually, we can test the convergence by ‖Yj −Xj − Ej‖2F
6 ε [11] . The iterative process can be stopped by a thresh-
old denoted by Th, which is related to the standard deviation
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(a) (b)

(c) (d)

Fig. 3: The deblocking results of House subimage by
different schemes at q = 5.(a)JPEG: PSNR=26.40dB,
SSIM=0.75, GBIM=7.25; (b)BM3D: PSNR=27.35dB,

SSIM=0.79, GBIM=3.94;(c)FoE: PSNR=27.56dB,
SSIM=0.80, GBIM=3.78; (d)Proposed: PSNR=27.66dB,

SSIM=0.80, GBIM=1.75

of the quantization noise. Here, we apply the intensity diver-
gence between two boundary pixels to estimate the threshold,
located on both sides of a boundary between two blocks [10].
In this paper, only the vertical block discontinuities are con-
sidered,

Th ∝ |I (:, 8× j + 1)− I (:, 8× j)| (10)

4. EXPERIMENTAL RESULTS

We preform the experiments on several grayscale images
House, Lena, Monarch, Barbara, Boat, Peppers, Baboon,
Fruits and Cameraman, whose sizes range from 256×256 to
512×512 pixels. JPEG standard quality factor (QF) is applied
to measure the quality of the compressed images, and we per-
form the experiments with QF values from 0 to 20 where
most of blocking artifacts occur in. As the prior work [8],
three typical quantization tables, denoted as Q1, Q2 and Q3,
have been commonly used for image compression , which
correspond to QF parameters of q = 11, q = 9 and q = 5,
respectively. In order to compare the quality of deblock-
ing, three metrics are used in our paper, i.e., PSNR, SSIM
(Structural SIMilarity)[14], GBIM (Generalized Block-edge
Impairment Metric)[18]. Note that PSNR is a commonly
used measure, SSIM index measures the similarity between
two images and GBIM is an effective evaluation metric for
blocky artifact. A smaller value of GBIM means a better
degree of deblocking. In our experiments, we compare our
proposed scheme to the state-of-the-art algorithms, including
FoE (fields of experts) [13], BM3D (Block-matching and 3D

Table 1: Performance Comparison for test images at
512x512,QF=11,Q1

Image FoE [13] Sparse method[8] PROPOSED

PSNR SSIM GBIM PSNR SSIM GBIM PSNR SSIM GBIM

Barbara 26.73 0.81 1.6 26.82 0.8 1.3 26.91 0.82 1.31
Lena 32.06 0.86 1.76 32.06 0.86 1.73 32.1 0.87 1.68
Boat 29.48 0.8 1.62 29.4 0.79 1.53 29.5 0.8 1.5

Peppers 31.9 0.84 1.94 31.7 0.83 1.92 31.82 0.83 1.53
Baboon 24.12 0.7 1.72 24.08 0.67 1.49 24.11 0.71 1.25
Fruits 31.48 0.84 2.0 31.43 0.84 1.78 31.46 0.86 1.32

Table 2: Performance Comparison for test images at
512x512, QF=9, Q2

Image FoE [13] Sparse method[8] PROPOSED

PSNR SSIM GBIM PSNR SSIM GBIM PSNR SSIM GBIM

Barbara 26.18 0.79 1.61 26.29 0.78 1.29 26.32 0.8 1.13
Lena 31.32 0.85 1.92 31.34 0.85 1.81 31.38 0.86 1.52
Boat 28.79 0.78 1.73 28.74 0.77 1.59 28.81 0.81 1.35

Peppers 31.28 0.83 1.99 31.11 0.82 1.94 31.25 0.83 1.72
Baboon 23.6 0.66 1.78 23.56 0.63 1.51 23.74 0.71 1.47
Fruits 30.8 0.83 2.16 30.81 0.83 1.86 30.8 0.83 1.75

filtering) [4] and sparse representation[8]. For simplicity,
we adopt a Gaussian filter with σ = 11 to decompose the
blocky image and empirically select the size of patch as 7×7
with square neighborhood. The visual quality comparison of
the proposed scheme is provided in Fig. 3, in which only
sub-images of House are provided for visual comparison at
q = 5. The results demonstrate that the proposed scheme
achieves a very competitive deblocking performance with the
fine image structure preservation, compared with the state-of-
art image deblocking algorithms. In particular, the results of
our method in terms of GBIM represent good blocky artifact
removal and though there exists moderate results in terms of
PSNR for some test images. According to the visual compar-
ison, it can be seen that the proposed scheme is effective in
this aspect. Please refer to Tables 1 to 3 for more details.

5. CONCLUSION

In this paper, a novel image deblocking algorithm based on
low-rank matrix recovery is proposed, in which the high-
frequency component of the blocky image is recovered by
solving an optimization problem of the nuclear norm and
`1 -norm constraint. According to the experimental result-
s, the proposed scheme can achieve competitive deblocking
performance with good image structure preservation.

Table 3: Performance comparison for test images at
256× 256, QF=5, Q3

Image FoE [13] BM3D [4] PROPOSED

PSNR SSIM GBIM PSNR SSIM GBIM PSNR SSIM GBIM

Lena 25.0 0.73 2.86 25.08 0.72 3.03 25.083 0.72 2.624
Monarch 24.11 0.82 3.12 24.27 0.81 2.74 24.23 0.81 2.4

Cameraman 23.3 0.82 3.31 23.34 0.81 3.25 22.89 0.79 3.08
House 27.56 0.8 3.78 27.35 0.79 3.94 27.66 0.8 1.75
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