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ABSTRACT

The contextual coding of data requires in general a step which re-

duces the vast variety of possible contexts down to a feasible num-

ber. This paper presents a new method for non-uniform quanti-

sation of contexts, which adaptively merges adjacent intervals as

long as the increase of the contextual entropy is negligible. This

method is incorporated in a framework for lossless image compres-

sion. In combination with an automatic determination of model sizes

for histogram-tail truncation, the proposed approach leads to a sig-

nificant gain in compression performance for a wide range of differ-

ent natural images.

Index Terms— context quantisation, modelling, arithmetic cod-

ing, image compression

1. INTRODUCTION

Let X be a source producing K different symbols si (i = 1, . . . ,K).

Then the source entropy is computed based on the probabilities p(si)
of these symbols by

H(X) = −

K∑

i=1

p(si) · log2(p(si)) . (1)

Under the assumption that there are no dependencies between the

symbols, at least H(X) bits must be spent for one symbol on aver-

age for transmitting or storing a symbol sequence produced by this

source. In many applications, however, symbol probabilities depend

on some conditions. These conditions form a context C and the

probabilities become contextual probabilities p(si|C). The entropy

for each subcontext Cj is given by

H(X|Cj) = −

K∑

i=1

p(si|Cj) · log2(p(si|Cj)) (2)

and the contextual entropy of the source X is the weighted average

of these single, subcontext-related, entropies

H(X|C) = −
∑

j

p(Cj) ·H(X|Cj) , (3)

with p(Cj) being the probability of subcontext Cj . As long as the

symbol probabilities are affected by the context C, H(X|C) <
H(X) holds and fewer bits are required for storing or transmitting.1

1In the case when the context of the current symbol is simply
constituted by the sequence of its predecessors, i.e. p(sm|C) =
p(sm|sm−1sm−2 · · · s0), the contextual probabilities are called condi-

tional probabilities, H(X|C) = H(X|X(m)) is called conditional entropy,
and the source could be described by a Markovian model of mth order.

The problem of context modelling was addressed in a rigorous

manner for the first time in [1]. It turned out, however, that in appli-

cations with large symbol alphabets, and especially if the symbols

have a physical meaning, this tree-based method causes too high

costs compared to methods utilising some prior knowledge [2]. This

prior knowledge should be part of the context C or can, as for exam-

ple in lossless image compression, be used for a preprocessing step

(e.g. prediction of signal values).

The context C can have an arbitrarily high complexity. The cru-

cial task in practical application of data compression is to reduce

this complexity down to a feasible order. This process of reduction

is called context quantisation. Let Q(C) be the quantised version of

C, then H(X|Q(C)) ≥ H(X|C) holds. The aim is to find a practi-

cable, finite set of subcontexts Cj making H(X|Q(C)) as small as

possible. The knowledge about the contextual probabilities p(si|Cj)
can be used for efficient arithmetic coding.

In principle, context quantisation requires two steps. The first

step identifies dependencies between accessible information and

the symbols to be encoded, which can then be utilised for the con-

text constitution. This task is mainly application-driven and will

be called modelling in the sequel. The second step must limit the

number of different contexts Cj avoiding the problem of context

dilution, which appears when count statistics are spread over too

many contexts [3]. In the process of symbol coding, the arithmetic

coder ideally selects the distribution based on the context Cj .

In dependence on how many conditions are involved in context

formation, the modelling is typically a multidimensional problem

and the reduction of the number of subcontexts must be solved by

any kind of vector quantisation [4]. In image coding, these condi-

tions (mostly prediction errors in the causal neighbourhood) are of-

ten combined leading to a scalar value [5, 6, 7, 8]. This combination

typically simplifies the process to non-uniform (scalar) quantisation.

In addition to the prediction errors, also textural information can be

exploited [9]. The approaches in [10, 11] even use merely a uniform

quantiser. Other approaches convert the vector quantisation into a

combination of several non-uniform scalar quantisers [3]. No quan-

tisation of the scalar value is required at all when the conditions are

solely used to find online the distribution of the symbols the arith-

metic coder has to work with [12, 13].2 In [14], the context quanti-

sation is discussed with respect to the zero coding in the framework

of JPEG2000.

This paper presents a novel technique for the reduction of the

context number, mapping the vector-quantisation problem into non-

uniform scalar quantisation. The application of lossless image com-

2Strictly speaking, the quantisation is performed at that moment, when
the continuous distribution model is mapped to the discrete representation of
the arithmetic coder intervals.
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pression is addressed. As in [8], the proposed method does not use

fixed thresholds for the determination of the coding contexts, but

computes them adaptively for each single image. This requires an

initial pass at the encoder and the thresholds have to be transmitted

as side information (overhead). In addition, also the model sizes of

the symbol distributions are adaptively defined improving the updat-

ing process in the arithmetic coding stage.

The paper is organised as follows: Section 2 describes the

application-specific context modelling and the novel process of

reducing the number of contexts. Section 3 discusses how the com-

pression scheme utilises the context information and describes some

coding details. Section 4 presents the results showing the influence

of the proposed methods also in comparison to the state-of-the-art

methods, and a summary is given in Section 5 .

2. MODELLING AND CONTEXT QUANTISATION

2.1. Application-specific context modelling

The application in mind is lossless image compression using a

context-based linear prediction similar to CoBaLP proposed in [15].

In contrast to CoBaLP, we use a two-pass scheme and adaptively

determine the prediction contexts based on the texture in the image.

As large prediction-error magnitudes tend to cluster in certain

image regions (and small ones in other regions), the magnitudes of

errors in the causal neighbourhood of the current position are cor-

related to the magnitude of actual prediction error. In [9], it was

already mentioned that the current value also depends on the texture

of the original image data surrounding the current position. That

is why we combine both types of information. The estimate of the

current prediction-error magnitude is computed as

|ê0| =

∑

i∈T

wi · |ei|+ wpx · |epx|

∑

i∈T

wi + wpx

(4)

The index px corresponds to the prediction context under which the

current prediction was made. It should be remarked that the pre-

diction contexts are built based on the texture of the original image

data and should not be mixed with the coding context, which will be

determined based on equation (4).

The last summand in (4) expresses the textural dependency and

corresponds to the average of absolute errors occurring in context px
up to the actual position

|epx| =
1

count(px)
·
∑

j∈px

|ej | . (5)

The magnitudes of prediction errors |ei| are taken from the causal

neighbourhood defined by the template T = {A,B, . . . , R} =
{|ei|} (Fig. 1). The weights wi are empirically set to the values

shown in Fig. 2 and turned out to be superior compared to other set-

tings as in [7] and [8], where the neighbours are weighted based on

their Euclidean distances to the current position. The influence of the

closest neighbours is triggered by a kind of directional information

based on the absolute gradients |C −B| and |C −A|.

The textural information is not only involved via wpx · |epx| with

an empirical value of wpx = 0.3 ·
∑

i∈T
wi, but is also taken into

account in a second manner. In such a case when the prediction

context at the current position is identical to the context at other po-

sitions within the template T , the weights wi of the corresponding
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Fig. 1. Template T of prediction-errors magnitudes, which are used

for the coding-context determination
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Fig. 2. Weights wi for prediction-error magnitudes in template T , a)

if |C −B| < |C −A|, b) if |C −B| > |C −A|. If A == B, then

wA = wB = 6.

magnitudes are increased, by two for A,B,C, and D and by one for

all other.

Using (4), the multidimensional problem based on the elements

|ei|, ∀i and |epx| is mapped to a one-dimensional problem based on

the scalar value |ê0|.

2.2. Adaptive reduction of the number of contexts

The computed value of ˆ|e0| (see eq.4), gives a good estimation of the

true magnitude of the current prediction error. The estimate could be

used as a parameter for a pre-defined distribution-model function.

This approach is followed in [13], for example, and no quantisation

of ˆ|e0| would be required. The main disadvantage therein is that

this distribution might be suitable for a certain class of images but

might not be for others. This could be taken into account with ad-

ditional parameters making the distribution model more flexible [8].

The alternative is to adaptively create the distribution of the true e0
based on the samples which have been already processed. This is

realised with a histogram hCj
, containing the counts of all sample

values which occurred for a context Cj up to the current position. As

the distribution has to be dependent on the estimates |ê0|, we need a

function which maps the estimate to one of a limited number of dif-

ferent distributions, or more precisely to a histogram hCj
. With re-

spect to the derivations in Section 1, |ê0| has to control the selection

of a certain subcontext Cj in such a manner that the context-related

entropies H(X|Cj) remain small.

This paper proposes a two-step method. At first, |ê0| is uni-

formly quantised into K = 10 · range(|ei|) intervals. The value

range(|ei|) is equal to (xmax+1)/2+1 and the factor of 10 merely

guarantees that the initial granularity is fine enough.3

The second step merges adjacent intervals based on an entropy

criterion. Let q = 0, 1, 2, . . . ,K−1 be the interval numbers. Based

on the count statistics of the absolute prediction errors |ê0| in each

of the K intervals, the entropies H(X|q) are calculated. Then those

entropies H(X|q, q + 1) are computed which result after merging

the count statistics of adjacent intervals q and q + 1. The cost of

3In case that there are xmax + 1 different values in the image signal,
the prediction errors e[n] = x[n] − x̂ can be mapped into the range of
−(xmax + 1)/2 ≤ e[n] ≤ xmax/2. Taking the absolute value of e[n]
results to a range of 0 ≤ |ei| ≤ (xmax + 1)/2.
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Table 1. Examples of adaptive context quantisation and model sizes

RNAi dna 12bit kodim01 woman G

thresh. size thresh. size thresh. size

cx for |ê0| M [cx] for |ê0| M [cx] for |ê0| M [cx]
0 13.7 16 1.2 2 0.7 2

1 16.7 21 1.5 2 1.0 2

2 45.2 37 2.0 3 1.2 2

3 78.0 98 2.4 3 1.5 3

4 121.4 180 3.0 4 1.8 3

5 158.8 259 3.6 5 2.1 3

6 202.6 309 4.3 6 2.3 3

7 – 412 5.3 8 2.5 4

8 – – 6.4 10 2.7 4
... – –

...
...

...
...

18 – – – 54 10.9 18
... – –

...
...

...
...

22 – – – – 26.7 33

23 – – – – – 43

merging the two intervals is

J(q, q + 1) = H(X|q, q + 1) · (nq + nq+1) − (6)

[H(X|q) · nq +H(X|q + 1) · nq+1] ,

with nq and nq+1 being the numbers of samples belonging to in-

terval q or q + 1, respectively. The two intervals with the smallest

merging costs are finally combined, the total number K of intervals

is decremented, and this process is iteratively continued until the

smallest cost J(l) in iteration number l exceeds a threshold, i.e. the

iteration stops if

J(l) ≥ J(l−1) · 1.2 . (7)

A safe-guard procedure ensures that the iteration is neither stopped

too early (J(l−1) must be larger than a certain value and the num-

ber of remaining contexts has fallen below a limit) nor to late (at

least two intervals must survive). The maximum number of coding

context is limited to 40. The factor of 1.2 in (7) balances between

increasing contextual entropy and coding costs caused by (i) the suc-

cessive update of the internal distributions of the arithmetic coder

and (ii) the side information (the interval borders), which has to be

transmitted.

This procedure typically results in 10–30 intervals (i.e., cod-

ing contexts Cj) for natural (non-synthetic) images. The thresholds

between the intervals, however, are quite different, Table 1. Non-

photographic natural images can show different characteristics lead-

ing to different settings, as RNAi dna 12bit, for example.

3. CODING ASPECTS

Let us assume that the entire process of application-specific mod-

elling and context quantisation led to the contexts Cj = cx =
0, 1, . . . ,K − 1. The mapping |ê0| 7→ cx typically results in sorted

contexts, i.e., the higher cx, the higher the variance of the true pre-

diction errors e0 which are assigned to cx. The theoretical range of

possible prediction errors in each context is −(xmax+1)/2 ≤ e0 ≤
xmax/2, i.e., the alphabet of symbols comprises xmax + 1 different

symbols.

As already mentioned above, the distribution model hcx (the his-

togram) is built up based on the counts of all samples e0 already pro-

cessed. As the counts of all symbols must be initialised to a value of

at least one in the beginning of arithmetic coding, the histogram can

be significantly distorted reducing the coding efficiency, especially

for narrow distributions without long tails. Instead of using the same

alphabet for each context, we therefore propose to reduce the range

to −M [cx] ≤ e0 ≤ M [cx] with M [cx] chosen in such a manner

that at least 13/16 of all samples of cx are included. Assuming a

Laplacian distribution, this corresponds to a range of ±σ. The tech-

nique of limiting the alphabet size is known as tail truncation [9].

In contrast to former approaches (e.g. [9, 16]), which use fixed trun-

cation thresholds, the proposed scheme adaptively determines the

thresholds M [cx] as described above for each single image and they

have to be transmitted to the decoder.

The symbols to be encoded are s = e0 + M [cx] + 1 with an

alphabet size of 2 · (M [cx] + 1). If the magnitude of e0 is too large

(s < 1 or s > 2 ·M [cx]+1, s = 0 is transmitted instead, signalling

an exception handling.

Symbols which do not fit the selected distribution model show

different statistics. That is why a second set of distribution mod-

els g[cx] with same sizes M [cx] is prepared. As soon as the ex-

ception handling is activated, the context number is incremented

cx′ = cx + 1 (resulting in a model with possibly larger alphabet)

and the corresponding distribution model g[cx′] is used for encoding

the symbol. As the prediction error did not fit the previous alphabet,

its magnitude can be decreased to |e′0| = |e0| − M [cx] in advance

and the symbol is newly determined with s′ = e′0+M [cx′]+1. The

process is iterated until the symbol fits the alphabet of the selected

model.

Dependent on the context px used in the prediction stage, the

distribution of the prediction errors might be skewed to one or the

other side. The final distribution within the coding context cx is a

mixture of these skewed distributions. However, it can be narrowed

if all contributions are skewed to the same side. This is realised by

conditional flipping of the sign of e0 before it is mapped to the sym-

bol s. While former approaches uses the mean of the prediction er-

rors (i.e., {e0|px}), we found that the counts of positive and negative

values of e0 within each px lead to better compression results.

4. INVESTIGATIONS

The influence of the new context quantisation and some coding as-

pects is listed in Table 2. In the left part, it shows the entropies

of the prediction-error signals for some selected test images [17]4

and the bitrates when using a basic coding scheme. Then single

techniques (tail truncation, usage of g[cx], adaptive context quanti-

sation, and sign flipping) are successively added. The last column

shows the overhead, which has to be transmitted in the proposed

scheme. It consists of a fixed part (15 bytes), 10-962 bytes for the

adaptively generated prediction contexts, and 2-33 bytes for coding-

context thresholds and model sizes M [cx]. When fixed (i.e., non-

adaptive) context quantisation and/or full alphabet sizes are used, the

corresponding overhead bytes need not be sent. For checkker bw,

xray 10bit, and RNAi dna 12bit, an offline histogram packing ([19])

is adaptively activated leading to an additional overhead of 4, 112,

and 490 bytes, respectively. The side information is generally trans-

mitted using adaptive Rice coding.

4The RNAi image is taken from www.broadinstitute.org/bbbc/BBBC017
and was already used in [18]. However, there the data were scaled down to
8bpp.
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Table 2. Entropy of prediction error images and final bitrates in bit per pixel for different settings. See text for details.

Entropy Bitrates

image size of basic + tail + usage + adaptive + signflip Overhead

{e[n]} coding truncation of gcx context quant. =proposed [bytes]

barbara.y 720× 576 4.236 4.022 3.997 3.998 3.976 3.976 315

kodim01 768× 512 5.338 5.011 4.988 4.989 4.975 4.973 327

woman G 2048× 2560 4.540 4.163 4.161 4.161 4.148 4.147 1001

k05 Y 3072× 2048 3.288 3.213 3.211 3.211 3.188 3.188 853

roebuck 1936× 1288 3.577 3.225 3.219 3.219 3.190 3.186 614

checker 880× 560 0.470 0.353 0.343 0.338 0.320 0.314 406

checker bw 440× 440 0.005 0.007 0.007 0.007 0.006 0.006 31

tree flowers 1420× 930 5.151 5.054 5.047 5.046 5.039 5.039 508

k05 U 9bit 3072× 2048 2.490 2.381 2.379 2.378 2.334 2.333 606

xray 10bit 1576× 1976 3.499 3.176 3.165 3.165 3.137 3.135 687

RNAi dna 12bit 512× 512 6.047 6.122 5.933 5.927 5.888 5.888 699

Table 3. Bitrates in bits per pixel for different approaches. (CALIC, MRP, and Blend-24 cannot process images with more than 8bpp.)

Bitrate in bpp

image CoBaLP2 Glicbawls CALIC MRP Blend-24

proposed [13] [9] [8] [21]

barbara.y 3.976 3.915 4.339 3.844 3.685

kodim01 4.973 5.082 5.091 4.961 4.890

woman G 4.147 4.220 4.295 4.133 4.093

k05 Y 3.188 3.159 3.318 3.146 3.111

roebuck 3.186 3.155 3.343 3.083 3.070

chekker 0.314 1.984 0.163 0.164 0.232

chekker bw 0.006 0.397 0.007 0.010 0.042

tree flowers 5.039 5.085 5.276 4.971 4.938

average 3.104 3.375 3.229 3.039 3.008

k05 U 9bit 2.333 2.343 – – –

xray 10bpp 3.135 3.382 – – –

RNAi dna 12bit 5.888 5.979 – – –

Table 4. Total coding times in seconds for the image ’barbara.y’

CoBaLP2 Glicbawls CALIC MRP Blend-24

proposed [13] [9] [8] [21]

Enc. 37 9 < 1 214 659

Dec. 36 9 < 1 1 629

If g[cx] is not used, the symbols s which do not fit the model

size M [cx] also are coded using the distribution h[cx]. The fixed

non-uniform context quantisation uses eight intervals as in [9] in-

stead of using the proposed adaptive merging of context intervals.

If the tail truncation is disabled, all distributions h[cx] use the full

range of possible prediction errors. This implies automatically that

the distributions g[cx] are meaningless. The influence of g[cx] is

negligible, when a fixed context quantisation is used. In combina-

tion with the the adaptive mode, however, it becomes essential.

Table 3 shows the compression results in comparison to other

state-of-the-art codecs. The Blend-24 codec is an advanced version

of the compression scheme presented in [20].

The encoding and decoding times of all investigated compres-

sion schemes are listed in Table 4. They were measured on an

Intel(R) Pentium(R) CPU G620 2.60GHz. MRP is the only non-

symmetric compressor, which determines the prediction parameters

on the encoder side and transmit them to the decoder along with the

compressed data.

5. SUMMARY AND DISCUSSION

We have presented a new technique for the adaptive merging of cod-

ing contexts based on an entropy criterion with application to loss-

less image coding. Based on the complexity reduction via mapping

the multi-dimensional problem to a one-dimensional, it has been ver-

ified that the data-specific determination of the context borders leads

to an improvement in coding performance.

The context quantisation is accompanied by an adaptive deter-

mination of the alphabet size (tail truncation), which both together

significantly benefit from the second set of distribution models g[cx],
which is used for symbols outside the truncated range of h[cx]. The

sign flipping based on the counts of signs (instead of mean values) is

another contribution of the presented work. The investigations have

generally shown that a image-content adaptive processing increases

the coding performance compared to fixed settings.

The proposed approach closes the gap between fast methods like

CALIC and brute-force approaches as MRP and Blend-24.

Although the presented mapping to a one-dimensional context-

quantisation problem already integrates several single components,

it is expected that there is still some room for improvements. Espe-

cially, the optimal size of the template comprising the local neigh-

bourhood heavily depends on the data characteristics. For very noisy

data, the template should be larger and vice versa. Also the weights

could be set even more adaptively.
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