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ABSTRACT

Deep neural networks (DNNs) are capable of modeling large acous-
tic variations. However, the performance on noisy data is still below
humans’ expectations. In this work, we present an ideal hidden-
activation masking (IHM) approach to improve their noise robust-
ness. This IHM is inspired by the existing spectral masking tech-
niques. Instead of masking away the noise-dominant components
in the spectral domain, we propose to discard DNNs’ inconsistent
hidden activations. The IHM is computed from the parallel data to
identify hidden units that are immune to environment noise. DNNs
then utilize it to improve their prediction robustness with the noise-
invariant activations. Experimental results on the Aurora4 task have
shown that the proposed IHM is both effective in reducing noise vari-
ations and robust to mask estimation errors.

Index Terms— Deep Neural Networks, Noise Robustness

1. INTRODUCTION

With the fast adoption of speech-based services, noise robustness of
automatic speech recognition (ASR) systems is becoming more and
more crucial to better user experiences in real world applications.
Deep neural networks (DNNs) have shown a much better generaliza-
tion capability than conventional Gaussian mixture models (GMMs)
[1]. However, the performance of DNNs on speech from noisy envi-
ronments is still far from humans’ expectations. Addressing DNNs’
noise robustness is attracting much interest.

In this work, we mainly focus on the speech-independent noise.
To compensate the decreased intelligibility caused by noise, we
could either enhance the target speech or reduce the interfering
noise. In [2, 3], different feature enhancement techniques are bor-
rowed from GMMs for DNNs; however, none of them could out-
perform the multi-style DNN baseline. [4, 5] adopt neural network
models to directly reconstruct clean speech features from the noisy
ones. They have no explicit noise assumption and are hence more
dependent upon the training data to provide a reasonable sample of
potential noise environments. Besides these feature denoising ap-
proaches, there are also some attempts to incorporate noise statistics
into DNN models. In [6], a factorial hidden restricted Boltzmann
machine is developed to explicitly model the noise distribution and
how the noise affects the speech. However, due to the unobserved
noise parameters, the inference is intractable and scaling exponen-
tially with the number of hidden units. [7] treats the global mean
and variance normalization (MVN) process as a single Gaussian
generative front-end for DNNs and applies VTS to compensate it
using noise estimation from the target test utterance. Due to the over
simplicity of the single Gaussian-based compensation, it cannot
outperform the per-utterance MVN baseline. Only when adaptive

(a) Original clean features (b) Original noisy features

(c) IBM masked features (d) IRM masked features

Fig. 1. Different spectrograms for the utterance “440c0201”.

training is used does it yield moderate gains. In [8], the acoustic fea-
tures are concatenated with noise parameters to train a “noise aware”
DNN. However the grain is negligible and only after adopting the
dropout fine-tuning [9] does it yield better performance.

Recently, the spectral masking approach has shown some
promising results in improving DNNs’ noise robustness [10]. Moti-
vated from humans’ separation-prior-to-recognition speech percep-
tion process [11, 12], masks are adopted to separate speech from
noise. An ideal binary mask (IBM) [13, 14] is used to identify each
unit in a time-frequency (T-F) representation of the noisy signal
as speech dominant or noise dominant. When applied in a direct
masking manner [15, 16] , the IBM is used as a binary gain function
to attenuate the energy within the noise-dominant T-F units. In
[17], an ideal ratio mask (IRM) is developed and has been shown
to outperform the IBM. In this work, we further extend the idea
of masking into DNNs’ hidden layers, which is referred to as the
ideal hidden-activation mask (IHM). Instead of masking away the
noise-dominant units, we discard the hidden units that generate
inconsistent activations for speech from different noise conditions.
The rest of the paper is organized as follows. In Section 2, the
existing spectral masking techniques, i.e. the IBM and the IRM, are
discussed. Section 3 details the proposed IHM. Evaluation results
are presented in Section 4 and we conclude the paper in Section 5.

2. SPECTRAL MASKING

One straightforward explanation to DNNs’ degradations on noisy
data is the mismatch between the clean and noisy speech, which is
illustrated in Fig. 1(a) and Fig. 1(b). To address this mismatch prob-
lem, the spectral masking technique aims to reduce the corruption
noise in the power spectrum domain such that the extracted spec-
tral/cepstral features are consistent across different noise environ-
ments. Two types of spectral masks are commonly used, namely the
ideal binary mask and the ideal ratio mask.
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2.1. Ideal Binary Mask (IBM)

The IBM [13, 14] is defined as:

m
(IBM)
t,f =

{
1 if rt,f > LC
0 otherwise, and rt,f = 10 log10

x(t, f)

n(t, f)
, (1)

where rt,f is the instantaneous local signal-to-noise ratio (SNR) of
the T-F unit at the time frame t and the frequency channel f . x(t, f)
and n(t, f) are the corresponding speech and noise energies. LC is
a local SNR criterion and is set to −6dB as suggested in [18, 19].

2.2. Ideal Ratio Mask (IRM)

The IRM [17, 20] is defined as:

m
(IRM)
t,f = (1 + exp(−γ ∗ (rt,f − β)))−1 (2)

where γ controls the slope of the sigmoid function and β corre-
sponds to the LC. By tuning γ and β, we can control the range of
SNRs to focus on while training the mask estimators. As suggested
in [17], γ = 0.2 and β = −6 dB are adopted.

A visual comparison between the masked features (Fig. 1(c) and
Fig. 1(d)) and the original clean and noisy features (Fig. 1(a) and
Fig. 1(b)) could suggest that the masked features looks more similar
to the clean speech. Moreover, the IRM seems capable of retaining
more detailed information than the IBM.

3. IDEAL HIDDEN-ACTIVATION MASKING (IHM)

Speech data arises from the rich interaction of many sources. These
factors interact in a complex way that complicates the recognition
task. If we could identify and separate out these factors, we would
largely ease the learning problem. The powerfulness of DNNs
over GMMs in modeling large acoustic variations also comes from
DNNs’ high-level abstraction capabilities in identifying the underly-
ing factors. With the guidance of the task specific supervisions at the
final output layer, the distributed hidden representations at each layer
try to encode only the underlying speech-dependent factors and dis-
card noise factors in its input features. Using many layers’ nonlinear
transformations, DNNs could encode a rather complex relationship
between the original acoustic features and the target classification
labels. However, due to the commonly adopted gradient-based
learning, the supervision strength decreases through many layers’
back-propagation and the confusion increases. The layers near in-
puts hence have to maintain more redundancies to avoid missing
any potential clues. When the testing data is similar to the training
data, these redundant feature detectors have similar active levels as
those have been seen during training and hence will not cause any
problem. But when there are noise variations, they may become
unexpectedly active and lead to probable performance degradations.
We thus propose to mask away those unreliable feature detectors in
DNN layers for improved noise robustness.

Due to the lack of the intuitive relationships between the hidden
units and the target classification labels, we use the parallel speech
data to guide the learning of noise-invariant hidden detectors. By
comparing the hidden activations generated from the noisy and the
corresponding clean speech, we could identify activations that are
consistent between them; the corresponding feature detectors (i.e.
the hidden units) will then be marked as noise-invariant. This mask
is named the ideal hidden-activation mask (IHM). By applying this
IHM, the hidden representations will become less noise-prone and

the following DNN layers may easily yield correct predictions. The
mathematical formulation of the IHM is defined as follows:

m
(IHM)
l,t,f =

{
1 if sl,t,f > θ
0 otherwise, (3)

sl,t,f = exp{−α ∗ (h
(clean)
l,t,f − h(noisy)

l,t,f )2} (4)

where sl,t,f denotes the similarity between the DNN’s clean hidden
activation, h(clean)

l,t,f , and the DNN’s noisy hidden activation, h(noisy)
l,t,f ,

of the f th hidden unit in the lth hidden layer at the tth time frame.
The two parametersα and θ controls the shape of the similarity curve
and the threshold to decide whether a detector is noise-invariant. By
default, we use the setting of α = 1.0 and θ = 0.5. The similarity
curves (Equ. (4)) with different α values are plotted in Fig. 2. In
practice, the lack of parallel data for testing requires the estimation of
IHMs. In this work, a DNN-based mask estimator is learned with the
training IHMs as supervision targets. During testing, we directly use
m

(IHM)
l,t,f = sl,t,f to alleviate potential errors in the mask estimation.
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Fig. 2. The similarity function for the IHM.

The proposed IHM may look similar to the dropout technique
[9], but they are different. The masking noise found in the dropout
encourages a faster symmetry breaking by randomly discarding
some of the hidden activations. However, the IHM is a deterministic
way of identifying the noise-invariant hidden detectors.

4. EXPERIMENTS

In this section we present our investigation of the proposed IHM
on the Aurora4 task [21]. The multi-style training data is used for
training and the clean data is used only for computations of ideal
masks. The complete test data consists of 14 subsets. Set 01 is clean
and sets 02 ∼ 07 each is corrupted by one of the six different noise
types (street traffic, train station, car, babble, restaurant, airport) at
5-15 dB SNR. Set 08 is filtered to incur channel distortions and sets
09 ∼ 14 further add one of the six noise types similarly. The noise
is common across training and testing but the SNR differs, which
is 10-20 dB for training. The dev data also consists of 14 subsets
corresponding to the test data and is used for DNN’s fine-tuning and
IHM’s parameter tunning.
4.1. Baseline
A context-dependent GMM-HMM system with 3257 senones is
trained in a maximum likelihood manner. The per-utterance cepstral
MVN normalized 39D MFCC features are used. This model is
used to generate per-frame senone labels for the DNN training. A
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Fig. 3. The average test KL divergence between the noisy and clean
hidden activations at different hidden layers of the baseline DNN.
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Fig. 4. The test WER performance of applying IHM (α = 1.0 and
θ = 0.5) at different hidden layers of the baseline DNN.

6-hidden layer DNN is trained with an unsupervised pre-training
followed by a supervised fine-tuning. The inputs are 11 adjacent
frames of per-utterance MVN normalized 72D FBank features in-
cluding the static, ∆ and ∆∆ statistics. We use 2048 hidden units
at each hidden layer. The softmax output layer has 3257 units
corresponding to the senones in the GMM-HMM system. All the
decodings are performed with the WSJ0 bigram language model.
This baseline DNN’s performance is tabulated in the first row of
Table 1. The performance degradation on noisy data is clearly ob-
servable by comparing the set 02∼ 07 to the set 01. With additional
channel distortions, the error rate further increases by 2 to 3 times.

4.2. Ideal Hidden-Activation Masking (IHM)
One of the assumptions to adopt the IHM is that the DNN-generated
hidden representations are not invariant to noise. Different noise in
speech signals may cause variations in the hidden feature representa-
tions. To validate this assumption, we compare different hidden ac-
tivations of the baseline DNN between each noisy set (02 ∼ 14) and
the clean one (01) using KL-divergence in Fig. 3. It shows that the
difference decreases dramatically while going deeper into the DNN.
On one hand, this reflects the importance of adopting many layers for
DNNs to obtain invariant feature representations; on the other hand,
there are still variations caused by noise in the high level representa-
tions learned by DNNs and the lower layers are more prone to noise.
To further improve DNNs’ noise robustness, reducing the variations
caused by noise in the hidden representations may be helpful.

Another assumption of the IHM is the redundancies in the hid-
den representations. By masking away some of the activations, there
should be sufficient information left for classification. To justify this,
we apply the proposed IHM with α = 1.0 and θ = 0.5 to different
hidden layers of the baseline DNN. From the results in Fig. 4, all the
IHMs have lower WERs on noisy test sets. Although there is not a
clear trend consistent with the KL-divergence (Fig. 3), applying the
IHM at the layer with the largest mismatch, i.e. H1, achieves the best
performance. In the following study, we will focus only on the H1.
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Fig. 5. The dev WER performance of applying IHM at H1 of the
baseline DNN with different α values and fixed θ = 0.5.
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Fig. 6. The dev WER performance of applying IHM at H1 of the
baseline DNN with different θ values and fixed α = 2.0.
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Fig. 7. The dev discarding ratios of active hidden features (> 0.001)
by applying the IHM at H1 of baseline DNN with α = 2.0.

Next, we tune the IHM parameters, α and θ, on the dev data. The
results of varying αwhile fixing θ = 0.5 are presented in Fig. 5. The
differences are relatively small except for α = 0.5 which actually
uses no masks. That is because from Fig. 2, the configuration α =
0.5 and θ = 0.5 simply generates an all-one mask. Among all the
values we investigate, α = 2.0 is slightly better; we hence use this
value for the following experiments. Next we vary the threshold
parameter θ while fixing α = 2.0. When θ = 0.1, nothing will be
masked away (Fig. 2). When θ = 0.9, we mask away on average
35.8% of the active H1 hidden activations (those with values above
0.001) and we could still obtain an average 10.6% relative WER
reduction. While changing the θ from 0.2 to 0.6 (Fig. 6), the WER
performance has only small variations and reaches the minimum at
θ = 0.4, which has the average discarding ratio of 18.0%. The per
dev set IHM activation discarding ratios for θ = 0.9 and θ = 0.4 are
also compared in Fig. 7. Finally, by applying IHMs with α = 2.0
and θ = 0.4 on the test data, we can obtain an average WER of 8.2%
and an average hidden activation discarding ratio of 18.9%.

4.3. Comparisons with IBM and IRM
In this set of experiments we compare our proposed IHM with the
existing spectral masking techniques, namely the IBM and the IRM.
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Table 1. Aurora4 WER (%) performance on each test set (01 ∼ 14) using different masks with different experiment configurations.

System Test Set Avg.01 02 03 04 05 06 07 08 09 10 11 12 13 14
Baseline 5.0 5.9 8.6 10.3 10.2 8.2 9.5 9.0 12.8 21.4 23.4 20.9 20.7 21.2 13.4

E1
IBM 5.1 13.5 19.5 22.6 21.3 17.4 20.3 19.1 22.5 28.2 27.2 28.0 27.8 28.9 21.5
IRM 5.1 5.6 5.9 5.8 5.7 5.7 5.6 7.4 9.2 8.3 7.1 8.2 8.3 8.7 6.9
IHM 5.0 5.2 5.9 6.2 6.2 5.9 6.0 8.0 9.3 11.2 12.0 11.9 10.6 12.0 8.2

E2
IBM 4.8 5.3 5.8 6.0 6.4 5.8 6.4 9.4 8.4 8.4 8.0 8.4 8.0 8.8 7.1
IRM 4.4 4.5 4.7 4.4 4.6 4.5 4.5 6.4 6.7 6.1 5.5 5.5 6.3 5.9 5.3
IHM 5.0 4.9 5.5 5.8 5.8 5.3 6.2 6.9 6.9 9.1 10.5 9.8 9.4 10.2 7.2

E3
IBM 4.9 7.5 12.5 15.7 14.0 12.4 14.2 10.3 15.9 29.3 31.7 29.8 28.3 29.3 18.3
IRM 4.5 6.2 10.3 12.3 11.4 9.9 11.2 9.3 15.7 25.9 28.1 26.3 25.3 26.4 15.9
IHM 5.1 6.0 9.7 10.3 10.5 8.7 10.5 8.9 13.4 21.2 23.4 21.8 20.8 22.1 13.7

E4
IBM 4.6 5.7 9.2 11.0 10.7 9.3 9.8 8.4 12.7 23.7 25.0 22.6 22.0 22.8 14.1
IRM 4.7 5.5 9.0 10.1 10.2 9.1 10.1 8.2 13.0 22.7 24.6 22.5 22.3 22.3 13.9
IHM 4.9 5.8 8.8 10.0 9.9 8.4 9.7 8.8 12.1 20.8 23.4 21.1 20.0 20.7 13.2

E5
IBM 4.7 5.6 8.1 9.5 9.4 7.9 9.1 8.2 11.5 20.3 22.6 20.0 19.8 19.6 12.6
IRM 4.9 5.6 8.3 9.8 9.3 7.8 9.4 8.0 12.0 20.6 22.7 20.2 19.7 19.5 12.7
IHM 4.9 5.7 8.4 10.1 9.6 8.0 9.3 8.8 12.1 20.7 23.0 20.8 19.8 20.6 13.0

Firstly, the ideal masks are applied to the test sets only and evaluated
with the baseline DNN. This is denoted as “E1” in Table 1. The real-
valued IRM yields lower WERs than both the two binary masks due
to the richness of its scaling based masking (Fig. 1(d)). Our IHM
largely outperforms the IBM, of which the large degradation comes
from the mismatch between the masked features and the training
data (Fig. 1(c)). To reduce this mismatch we retrain the baseline
DNN with ideally masked training data, which is denoted as “E2” in
Table 1. With retraining, all the three masks have achieved further
WER reductions. The IRM still performs the best and our IHM and
the IBM have similar WERs. The dramatic change in IBM perfor-
mance from “E1” to “E2” further confirms the differences between
the masked and the original features.

The investigations of ideal masks could tell us the potential of
different masks in removing noise corruptions. However, for real
applications, the lack of ideal masks poses a great challenge for all
the masking techniques. The errors in the estimated masks may even
over-weigh the gains obtained. Finding the mask that is both effec-
tive in variation removal and robust to estimation errors is crucial to
practical applications. We hence build three 6-hidden layer DNN-
based mask estimators respectively. Details about the learning of
the mask estimators could be found in [10]. In the “E3” part of Ta-
ble 1, we first evaluate the estimated masks with the ideal masked
DNN, i.e. the DNN used in “E2”. All the masks degrade the per-
formance and our proposed IHM has the minimum degradation. It
suggests that the errors in the estimated masks are crucial. To address
the mismatch between the ideal masks and the estimated masks, we
retrain the baseline DNN with the estimated masks instead of the
ideal ones. From the “E4” results of Table 1, our IHM performs the
best and is the only one that improves the baseline DNN’s perfor-
mance. The improvement is also statistically significant at the level
of p = 0.05 using the matched pair sentence segment word error
method. By further comparing the relative WER reductions of these
masks in Fig. 8, the spectral masking is preferable when the noise
is simple (such as the car noise in set 02); but it degrades largely
when the additive-noise assumption fails. The proposed IHM aims
to identify the noise-invariant feature detectors and is hence more
reliable across different noise types. On some sets (such as 03, 06,
07, 11 and 12), degradations have been observed for all the masks,
which may require better mask estimations.
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Fig. 8. The comparisons of the estimated IBM, IRM and IHM using
relative test WER reductions from the baseline system.

In [10], although the estimated spectral masks cannot improve
the baseline DNN’s performance, they do provide complementary
information to yield gains by averaging the two sets of posteriors.
We thus average the posteriors generated from “E4” and the baseline
respectively. The results reported in “E5” of Table 1 reconfirm the
finding in [10] and further gains are achieved for our IHM.

5. CONCLUSIONS

In this paper, we propose the use of an ideal hidden-activation mask
(IHM) at the first hidden layer of DNN acoustic models to further im-
prove their noise robustness. Unlike the traditional spectral masking
techniques such as the ideal binary masking (IBM) and the ideal ratio
masking (IRM), the IHM operates at the DNN’s distributed hidden
representation space rather than the power spectral feature domain.
The IBM and IRM aim to reduce the noise corruption and have the
assumption of additive noise; while the IHM targets to discard noise-
prone hidden units and has no noise type assumptions. Experimental
results on the Aurora4 task have shown that the IHM is both effective
in noise reduction and robust to mask estimation errors.
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