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ABSTRACT

The purpose of signal extrapolation is to estimate unknown
signal parts from known samples. This task is especially im-
portant for error concealment in image and video communi-
cation. For obtaining a high quality reconstruction, assump-
tions have to be made about the underlying signal in order to
solve this underdetermined problem. Among existent recon-
struction algorithms, frequency selective extrapolation (FSE)
achieves high performance by assuming that image signals
can be sparsely represented in the frequency domain. How-
ever, FSE does not take into account the low-pass behaviour
of natural images. In this paper, we propose a modified FSE
that takes this prior knowledge into account for the modelling,
yielding significant PSNR gains.

Index Terms— Image processing, error concealment

1. INTRODUCTION

Signal reconstruction is a very challenging task for many mul-
timedia applications where the quality of the received data is
of utmost importance. A common example is the transmis-
sion of image/video signals over error prone channels which
may yield block losses. The lost areas need to be concealed
employing the information provided by the correctly received
data. There are several examples of efficient error conceal-
ment (EC) techniques applied to image communication. The
EC algorithm proposed in [1] is based on Markov random
fields and focuses on preserving visually important features,
such as edges. Bilateral filtering that exploits a pair of gaus-
sian kernels is treated in [2]. In [3], the lost region is recov-
ered through sparse linear prediction. Moreover, inpainting
[4] can also be employed for concealment purposes.

An alternative approach to image EC is the frequency
selective extrapolation (FSE) proposed in [5]. In particu-
lar, the complex-valued FSE implementation [6] can provide
high quality reconstructions with a low computational bur-
den. This technique develops a signal model from the set
of Fourier basis functions which can be used to replace the
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unknown samples. Although this FSE algorithm basically
consists in determining frequency components, it does not
exploit any a priori knowledge regarding the typical spectrum
of natural images, which may result in high-frequency arti-
facts. In this paper, we propose the introduction of a low-pass
filtering in the FSE iterative procedure which can efficiently
account for this fact, increasing the FSE performance while
maintaining a low computational cost.

The paper is organized as follows. In Section 2, we pro-
vide a short review of the FSE algorithm. Our proposal, based
on residual filtering, is described in Section 3. Experimental
results are discussed in Section 4. The last section is devoted
to conclusions.

2. FREQUENCY SELECTIVE EXTRAPOLATION

Our proposal is a modification of the complex-valued imple-
mentation of FSE [6]. This approach is able to robustly recon-
struct various image contents at very high quality [6, 5, 7]. We
briefly summarize it in this section.

During the extrapolation process of FSE, the image is di-
vided into blocks of equal size. Besides the block actually
containing areas to be reconstructed, neighbouring samples
belonging to adjacent blocks are taken into account, as well.
All the considered samples make up the so called extrapola-
tion area L (an example is shown in Fig. 1). The size of area
L is M ×N samples and the signals in this area are indexed
by spatial variables m and n. All samples in area L belong to
one of the three following groups: the known samples built up
support area A, all unknown samples belong to the loss area
B (located at the centre of L) and all samples from neigh-
bouring blocks that have been extrapolated before belong to
the reconstructed areaR.

FSE extrapolation is carried out from a parametric model

g(m,n) =
∑

(k,l)∈K

ck,lϕk,l(m,n). (1)

This is a weighted superposition of two-dimensional basis
functions ϕk,l (m,n) with weights ck,l. In this work we will
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Fig. 1. Extrapolation area L as union of support area A, recon-
structed area R, and loss area B. The currently processed block
(marked by the red dashed line) is located in the centre.

employ Fourier functions,

ϕk,l(m,n) =
1

MN
e

2πj
M kme

2πj
N ln. (2)

As described in detail in [6], the model generation is per-
formed iteratively, with the initial model g(0)(m,n) being 0,
which involves that coefficients c(0)k,l are also set to 0. At every
iteration, one of the possible basis functions is selected. After
estimating the corresponding weight, it is added to the model
that has been generated so far. In order to determine the best
basis function and its weight at every iteration ν, the residual

r(ν)(m,n) =
(
s(m,n)− g(ν)(m,n)

)
· b(m,n) (3)

between the available signal s(m,n) and the current model
g(ν)(m,n) generated so far is regarded. Window b(m,n) is
zero for (m,n) ∈ B and one otherwise in order to ensure that
unknown pixels are not used.

The best function ϕu,v(m,n) at this iteration, conve-
niently weighted by a factor ∆cu,v , will be the one which
can better approximate this residual. Let us suppose that we
already know this function. Then, the corresponding model
coefficient will be updated as

c(ν+1)
u,v = c(ν)u,v + γ∆cu,v (4)

and the residual for the next iteration will be

r(ν+1)
u,v (m,n) =

(
r(ν)(m,n)−∆cu,vϕu,v(m,n)

)
· b(m,n).

(5)
Factor γ in Eq.(4) is introduced to compensate the orthogo-
nality deficiency of the proposed framework [7]. Coefficient
∆cu,v is estimated by minimizing a weighted square error ob-
tained from this last residual as

E(ν+1)
u,v =

∑
(m,n)∈L

w(m,n)
∣∣∣r(ν+1)
u,v (m,n)

∣∣∣2 . (6)

Finally, the desired coefficient is

∆cu,v =

∑
(m,n)∈L

r(ν)(m,n)ϕ∗u,v(m,n)w(m,n)

∑
(m,n)∈L

ϕ∗u,v(m,n)w(m,n)ϕu,v(m,n)
(7)

which can be interpreted as a weighted projection coeffi-
cient of r(ν)(m,n) on ϕu,v(m,n), The weighting function
w(m,n) can be defined as [5]

w(m,n) =


ρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2

∀ (m,n) ∈ A

δρ̂

√
(m−M−1

2 )
2
+(n−N−1

2 )
2

∀ (m,n) ∈ R
0 ∀ (m,n) ∈ B

.

(8)
Using this function, the influence of each sample on the model
generation can be controlled according to its position. This is
also the reason why the weighting function is divided into
three different parts. As all unknown samples cannot con-
tribute to the model generation, they have to be excluded from
the calculations. Accordingly, their weight in area B is set to
0. For the known samples, an exponentially decaying weight
is used for reducing their influence with increasing distance
to the area to be extrapolated in the current block. Parameter
ρ̂ controls the speed of the decay. As samples from neigh-
bouring blocks that are originally not known but have been
extrapolated before are not as reliable as originally available
samples, the influence for these samples is weighted by an
extra factor δ ∈ [0, 1].

The remaining issue is the determination of the best func-
tion ϕu,v(m,n). In order to do so, we must consider that,
in fact, the projection coefficient and the square error can be
computed for every basis function ϕk,l(m,n). Furthermore,
considering the orthogonality principle, every square error
E

(ν+1)
k,l can be decomposed as the square error determined

for the previous iteration E(ν) minus the achieved decrease
of square error, which is defined as [5],

∆E
(ν)
k,l = |∆ck,l|2

∑
(m,n)∈L

ϕ∗k,l(m,n)w(m,n)ϕk,l(m,n). (9)

The basis function can be selected now as the one which max-
imizes this decrease, that is,

(u, v) = argmax
(k,l)

∆E
(ν)
k,l . (10)

After the model generation has finished, all the samples
that are originally not known are taken from the model and
inserted at the corresponding positions of the incomplete orig-
inal signal.

3. FSE WITH RESIDUAL FILTERING

It is well known that low frequencies are likely to yield larger
Fourier coefficients than high ones in natural images [8, 9].
This is an a priori knowledge not considered in the original
FSE algorithm which could be incorporated into it in order
to improve both reconstruction quality and robustness. Thus,
in the same way as the knowledge about spatial influence is
controlled with weights w(m,n), we propose here the use of
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Fig. 2. One-dimensional profile of the filter H of size 64×64 with
f0 = 0.0098 and G = 292.9.

a frequency weighting (filtering) which, applied to the resid-
uals, can exploit this a priori knowledge about frequency im-
portance. In order to do so, it is convenient to express both
residuals and square errors in the frequency domain.

3.1. FSE in the frequency domain

FSE can be efficiently implemented and easily viewed in the
frequency domain [6]. Let us consider the spatially-weighted
version of the residual,

r(ν)w (m,n) = w(m,n)r(ν)(m,n). (11)

Then, from Eq. (7), the projection coefficient for function
ϕk,l(m,n) can be expressed as

∆ck,l = MN
R

(ν)
w (k, l)

W (0, 0)
, (12)

where R(ν)
w (k, l) and W (k, l) are the DFTs of r(ν)w (m,n) and

w(m,n), respectively. Also, the decrease of square error can
be expressed as,

∆E
(ν)
k,l =

|R(ν)
w (k, l)|2

W (0, 0)
. (13)

Finally, from Eq. (5), it is easily deduced that

R(ν+1)
w (k, l) = R(ν)

w (k, l)− 1

MN
∆cu,vW (k − u, l − v),

(14)
which provides the weighted residual required for the next
iteration directly in the frequency domain. Equations (12)-
(14) provide an efficient implementation of FSE, since it can
be fully carried out in the frequency domain.

3.2. Filtering the weighted residual (XFSE)

We can see that the evolution of the iterative procedure relies
on the computation carried out in Eqs. (12) and (13), that
is, on the weighted residual R(ν)

w (k, l). Therefore, a possible
way of incorporating the a priori knowledge about the low-
pass behaviour of natural images can be the low-pass filtering
of the residual in these equations, that is,

∆ck,l = MN
R

(ν)
w (k, l)H(k, l)

W (0, 0)
, (15)

(a) (b)

Fig. 3. Performance overview in terms of (a) PSNR and (b) residual
energy E(ν) of FSE and XFSE for the images of Peppers (blue), Boat
(red) and Goldhill (green). Dispersed error pattern is employed.

∆E
(ν)
k,l =

|R(ν)
w (k, l)H(k, l)|2

W (0, 0)
, (16)

where H(k, l) is even, real-valued and non-negative, and rep-
resents the frequency response of the applied low-pass filter.
The rest of the procedure can be kept unaltered. The resulting
procedure will be referred to as XFSE in the following.

The main issue to be addressed now is the low-pass fil-
ter selection. After some preliminary experiments, we have
applied a filter with the following circularly symmetric fre-
quency response,

H(k, l) =

log

[
G f0

2π
1[

f2
0+( k

M )
2
+( l

N )
2
]3/2

]
log
(

G
2πf2

0

) . (17)

This filter is inspired on the average power spectral density of
natural (isotropic) images given in [8], modified with a gain
factor G, smoothed by logarithm, and normalized to provide
H(0, 0) = 1. Parameter f0 controls the bandwidth. A one-
dimensional profile of this filter is shown in Fig. 2.

Let us analyze now the effect of this filter over the square
error decrease. At every FSE iteration, the basis function that
produces the largest decrease in the residual energy ∆E

(ν)
k,l is

selected. However, this may lead to overfitting since the re-
construction quality decreases once a critical number of iter-
ations is achieved [7], while the weighted residual error E(ν)

keeps falling (see Fig.3(a)). In order to prevent this overfit-
ting, when several basis functions yield a comparable (max-
imum) decrease ∆E

(ν)
k,l , the introduced filtering favours the

lowest frequencies. This is illustrated in Fig. 3(b), where we
can see that XFSE yields higher weighted residual error E(ν)

but, however, improves the reconstruction quality.
Regarding the projection coefficient ∆cu,v for the se-

lected function, since H(k, l) ≤ 1, the filter acts as a weight-
ing factor that reduces the contribution of high frequencies
to the reconstructed signal. This does not mean that high
frequencies are avoided, since if a high frequency is a clear
candidate to be included in the signal model, this frequency
will appear again in subsequent iterations. However, if it is
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(a) (b) (c) (d)

Fig. 4. Subjective comparison for a fraction of Peppers. (a) Orig-
inal image. (b) Received data. (c) Reconstruction by FSE. (d) Re-
construction by XFSE.

not, it will only appear spuriously, and its contribution to the
final signal model will be negligible.

Since H(u, v) ≤ 1, we can alternatively see our filter-
ing as a dynamic reduction of the orthogonality deficiency
compensation factor γ. As shown in [7], smaller compensa-
tion factors yield a better convergence (slower performance
decrease after a certain number of iterations) although more
iterations are required to achieve maximum performance. Al-
though we will frequently find that H(u, v)γ � γ, during
the first iterations low frequencies with high H(k, l) tend to
be selected, so there will be only little penalization in recon-
struction quality. On the other hand, in later iterations higher
frequencies are selected in order to tune fine details. For these
frequencies, the effective orthogonality deficiency compensa-
tion factor H(u, v)γ is smaller and the convergence is im-
proved as remarked above. This is shown in the next section.

4. EXPERIMENTAL RESULTS

The performance of our proposal is tested on the images of
Peppers (384×512), Boat (512×512) and Goldhill (720×576).
In addition, the set of 24 images (768×512) by Kodak [10]
is also used. We will employ a dispersed error pattern with
a block loss rate of around 25% (see [3] for details). In ad-
dition, consecutive block losses (50% loss rate) will also be
considered (see Fig. 4(b)). The blocks are considered to have
dimensions of 16×16 pixels and the size of L is 48×48. We
compare the performance with other spatial EC techniques,
namely EC based on Markov random field (MRF) [1], in-
painting (INP) [4], bilateral filtering (BLF) [2] and sparse
linear prediction (SLP) [3].

To set up the filter, the gain factorG has been heuristically
set to 292.9 in order to guarantee that the filter frequency re-
sponse is always positive. On the other hand, the filter band-
width is usually expressed as f0 = α/2π and the value of α
is around 0.06 [8] leading to f0 = 0.0098 which involves a
3dB-cutoff bin of 2.17 forN = M = 64. The remaining FSE
parameters are set according to [6], with γ = 0.25.

A comparison of XFSE and FSE is shown in Fig.4. By ap-
plying the residual filtering, the performance is improved on

MRF INP BLF SLP FSEmax XFSEfse XFSEmax

Peppers (a) 32.59 33.13 33.17 33.94 33.58 33.91 34.13
(b) 25.04 25.28 25.43 24.64 25.47 26.18 26.24

Boat (a) 27.91 27.79 28.37 28.54 28.90 29.02 29.22
(b) 23.07 22.69 22.85 22.48 23.75 23.97 24.16

Goldhill (a) 31.12 30.40 30.91 31.72 31.79 32.10 32.24
(b) 26.09 25.82 24.49 26.19 26.56 27.00 27.05

Kodak (a) 29.61 28.76 29.64 29.92 30.45 30.54 30.69
(b) 24.76 24.38 24.83 24.84 25.30 25.63 25.71

Table 1. PSNR values (in dB, whole images) for test images recon-
structed by several algorithms. The average PSNR for the Kodak set
is also included. Dispersed error pattern (a) and consecutive losses
(b) are applied. The best performances are in bold face.

(a) (b)

Fig. 5. Performance comparison for (a) dispersed and (b) con-
secutive losses. The PSNR for Peppers (blue), Boat (red), Gold-
hill (green) and the average PSNR for the Kodak set (magenta) are
shown.

average by approximately 0.4dB. This improvement is even
higher when consecutive block losses are considered. Also, it
is observed that the performance decrease with high a number
of iterations is alleviated. Note that although XFSE achieves
the maximum performance using more iterations than FSE,
XFSE already outperforms FSE at the number of iterations
for which FSE reaches its maximum PSNR. This behaviour
is also reflected in Table 1.

Table 1 shows a PSNR comparison of the tested tech-
niques for dispersed and consecutive losses. The best perfor-
mance of FSE (FSEmax) is compared to the best performance
of XFSE (XFSEmax) as well as to XFSE using the same num-
ber of iterations as FSEmax (XFSEfse). Our proposal outper-
forms other state-of-the-art techniques and improves the re-
construction quality with respect to FSE by up to 0.5dB for
dispersed losses and 0.7dB for consecutive losses. Finally,
simulations reveal that the processing time is increased by ap-
proximately only 13%.

5. CONCLUSIONS

We have proposed the introduction of the prior knowledge
about the natural image spectra into the FSE algorithm. This
is achieved by filtering the residual error by a specifically de-
signed low-pass filter. Better convergence and gains of up to
0.7dB with respect to the original FSE are achieved with a
marginal additional computational cost.
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