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ABSTRACT

In this paper we define the new concept of a perfectly reli-
able encoder (PRE) for erasure channels as an encoder whose
performance is optimal for every value of the loss probabil-
ity. As a first step toward the design of such an encoder,
we propose an idealized extreme unequal error protection en-
coding scheme. We derive models to optimize the encoder
performance. We show by experiments that the proposed
scheme approaches the theoretical behavior, and quantify the
gap with respect to a scheme specifically designed for a given
loss probability.

Index Terms— multimedia encoding, reliable encoding,
unequal error protection, erasure channel

1. INTRODUCTION

Multimedia encoding for transmission over unreliable chan-
nels has stimulated a lot of research activity in the last few
years. Basically, the idea behind every scheme for reliable
coding is to add some redundancy (e.g., via multiple descrip-
tion, erasure codes, and so on) so that the receiver can decode
the content with good quality even in the presence of errors
(typically, packet losses). The trade-off between the added
redundancy and the base quality of the content (i.e., the qual-
ity perceived when no packet is lost) is handled differently by
different reliable encoding schemes.

In this paper we approach the reliable encoding problem
from a different point of view, asking ourselves if a Per-
fectly Reliable Encoder (PRE) exists. To understand what we
mean with “perfectly reliable encoder” consider the following
setup: some multimedia content is encoded at an overall rate
(that is, including erasure correction data) of Rtot bit/sample.
The content is sent over a broadcast channel (e.g., wireless)
and received by many receivers. Every receiver experiences
different channel conditions represented, for example, by dif-
ferent loss probabilities P̀ . We will say that the encoder is
perfectly reliable if every client experiences the best quality
achievable for its channel conditions.

Note that in the described setup the content is encoded
only once and encoding parameters (e.g., how much redun-
dancy is added) cannot be adapted to each channel condi-

tion. Therefore, although it is easy to construct an encoder
that gives the optimal performance for a fixed loss probability
P̀ , in this case we want an encoder that it is (ideally) optimal
simultaneously for all possible loss probabilities. It is worth
observing that a PRE would be useful not only for transmis-
sion over erasure channels. For example, a PRE would make
rate adaptation very easy. In order to adapt the content to the
available bandwidth it would suffice to throw away data at
random; the same procedure could also be used, for example,
to do congestion control when sending data over UDP.

In this paper, we propose to investigate if a PRE can be ac-
tually designed, and we analyze the performance of an ideal-
ized Unequal Error Protection scheme that could seem a natu-
ral choice toward this objective. To the best of our knowledge,
the analysis and the transmission setup considered in this pa-
per are not fully analyzed in the literature, despite the great
interest for applications.

In particular, we consider an abstract scheme, which we
call Extreme Unequal Error Protection (EUEP), where the
signal is encoded with an embedded coder whose output bit-
stream is partitioned into many pieces, each one protected
with an erasure code. The length of the pieces and the redun-
dancy used for each piece are optimized so that the distance
between the performance of the encoder and the theoretical
best curve is minimized. The proposed scheme is clearly
ideal, so that its performance is an upper bound to the per-
formance of every practical scheme based on Unequal Error
Protection (UEP). It is shown that the best choice gives rise
to a curve that it is an offset version of the ideal one, a nice
behavior, albeit with a performance price to pay.

1.1. Prior Work

The literature on reliable coding is wide and variegate. In
the last years many approaches have been proposed includ-
ing Multiple Description Coding (MDC) using linear spaces
approaches (e.g., subsampling, frame expansions, correlating
transforms) [1] – [6], special quantizers [7], or Forward Er-
ror Correction (FEC) codes [8] – [17], and others. In some
case (e.g., [18]) FEC-based reliable encoding is used in cross-
layer structures. Reliable encoding has been proposed for a
variety of applications: video/image transmission over lossy
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networks is the most common one, but also video transmis-
sion over wireless links [18], transmission over peer-to-peer
networks [19] and others. All the cited works but [15] share
the characteristic that they work with a fixed channel, that is,
they suppose that the statistical description of the channel is
given.

Differences with Existing Literature. Since the approach
analyzed here is FEC-based, we will consider only existing
literature proposing FEC-based solutions. The works propos-
ing UEP solutions can be roughly partitioned into two classes:
papers that propose a specific coder for some specific appli-
cation [9, 10, 18, 19] and more theoretical papers that analyze
in more generality the problem of optimizing a UEP scheme,
without any specific reference to the type of encoded signal
[8, 11, 12, 13, 14, 15, 16, 17]. Because of the theoretical na-
ture of this paper, we will consider only the second group.

As already said, most of the existing works in the second
group consider a fixed channel whose statistical description,
described in terms of the probability pn of receiving n packets,
is known. Almost all those works use numerical procedures
to find the best UEP for a given channel; the exceptions are
[17] that proposes a closed-form solution, but only for a spe-
cial type of R-D curve, and [13] that proposes a sub-optimal,
but efficient, progressive algorithm. Our work differs from
those works because we do not try to optimize the UEP for
a given channel, but we consider the problem of minimiz-
ing the maximum difference between the distorsion experi-
enced by a client whose memoryless erasure channel has a
loss probability equal to P̀ and the optimal distorsion that the
client could experience with a specifically designed encoder.
In other words, we do not consider a specific channel, but we
try to optimize for all the possible P̀ .

From this point of view, [15] is the paper whose setup
most closely resemble ours. In [15] the authors consider the
problem of sending the same content, but at different resolu-
tions, to many clients, with the objective of minimizing the
maximum difference between the quality perceived by each
client and the corresponding optimal quality. They propose
a numerical procedure specifically tailored to this problem
based on norm-infinity minimization, as it is done in this pa-
per. However, we do not consider the problem of serving dif-
ferent clients that require different resolutions and, moreover,
we do not minimize over a set of channels, but over all the
possible P̀ .

2. PROBLEM STATEMENT

Suppose a transmitter can encode a multimedia content with
a budget rate (that includes both content and protection data)
equal to Rtot bit/sample. Suppose the encoded content is
broadcast and received by a specific client through an era-
sure memoryless binary channel with loss probability P̀ . It
is well known that, whatever the encoding mechanism, the
best SNR that this client can achieve is SNR(PrecRtot) where

Fig. 1. Bound on the quality achievable with rate at the source
equal to Rtot and packet reception probability equal to Prec.

Prec := 1− P̀ is the probability of receiving a bit and SNR(R)
denotes the rate-vs-SNR function associated with the mul-
timedia content, that is, SNR(R) is the maximum SNR (in
dB) theoretically achievable with a rate equal to R bit/sample
(in absence of losses). In other words, the best quality that
the receiver can experience is the quality associated with the
“actual rate” PrecRtot seen by the receiver. Fig. 1 shows the
graph of the ideal Prec-vs-SNR curve, which approaches a
straight line as Prec, and hence the effective rate, increases.
Note that the region above the curve is not achievable.

As well known, every point of the ideal curve is asymp-
totically achievable by using a suitable erasure code. Fig. 1
also shows a (qualitative) example of the Prec-vs-SNR curve
achievable with an erasure code. The curve exhibits the typ-
ical “cliff effect”: the code allows for a full recovery of the
data up to a given code design probability Pd . For loss prob-
abilities larger than Pd , the probability of recovering the data
gets smaller and the performance decays sharply. Note that
at Prec = 1 the SNR is lower than SNR(Rtot) because some of
the rate budget is used by the code.

A PRE is an encoder whose Prec-vs-SNR curve can be
made as close as desired to the ideal curve shown in Fig. 1,
possibly at the cost of an increased complexity. Since UEP
schemes are potential candidates for this type of problem, we
will analyze in the following an idealized form of UEP cod-
ing.

3. EXTREME UNEQUAL ERROR PROTECTION

The scheme that we analyze in this paper is an abstract
scheme that can be thought as an extreme version of an UEP
scheme. Given its ideal nature, the performance that we will
obtain will be an upper bound to the one of any practical
UEP scheme. In this paper we will suppose that we can use a
perfectly embedded encoder.

Hypothesis 1. A perfectly embedded encoder is available,
that is, an encoder whose output bit-stream is such that, by
decoding only the first H bits of the bit-stream obtained by en-
coding N samples, one obtains a Signal-to-Noise ratio equal
to SNR(H/N).
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Fig. 2. Partitioning of the bit-stream

3.1. Encoding

Let N be the number of samples of the information content
and let Rtot be the maximum number of bit per sample that
we can transmit. The idea is to encode the content with the
perfectly embedded encoder at a rate of R < Rtot bit/samples,
obtaining a string of RN bits, and using the remaining (Rtot−
R)N bits for protection. The protection bits should be opti-
mally distributed to approach the limit curve of Fig. 1. Let
ρ := Rtot/R denote the overall redundancy.

More into detail, the bit-string produced by the encoder
is partitioned into L consecutive blocks where the i-th block
(i = 1, . . . ,L) has size qiRN. Obviously, it must be ∑

L
i=1 qi =

1. It will be convenient to denote with cn the “cumulative
sums” of the first n values qi, that is, cn = ∑

n
i=1 qi (with, of

course, c0 = 0). Note that ciRN is the length of the bit-string
corresponding to the first i blocks. Fig. 2 shows a graphical
representation of the notation.

We protect the i-th block with a redundancy equal to ri >
1, that is, we add (ri− 1)qiRN, redundancy bits by using an
erasure code (e.g., a Reed-Solomon code). Therefore, we use
riqiRN bits for the i-th block and we will be able to recover
the i-th block if and only if we receive at least qiRN bits out
of riqiRN. The constraint on the total bit budget requires that
∑

L
i=1 riqi = Rtot/R = ρ .

3.2. Decoding

The decoder operates in a standard way: if the first k blocks
have been recovered, but not the k + 1-th one, the decoder
recovers the signal using the first k blocks and discards the
others (even if some block after the k+ 1-th is correctly re-
ceived). Note that in this case the decoder decodes using
ckRtot/ρ bit/sample, with an SNR equal to SNR(ckRtot/ρ), in
accordance with the hypothesis that the encoder is perfectly
embedded.

Our objective is to determine the values of qi and ri such
that the performance of this scheme is as close as possible (in
a sense to be defined) to the best theoretical performance. If
necessary, we will allow both N (the content size) and L (the
number of blocks) to go to infinity.

3.3. Decoder performance

For the sake of notational convenience, denote with Ek the
event corresponding to the correct reception of the first k
blocks, but not the k + 1-th one (EL corresponds, clearly,

to the reception of all the blocks). Observe that events Ek,
k = 0, . . . ,L, are a partition of the probability space, so that
the average distortion at the receiver E[D] can be obtained by
conditioning over {Ek}L

k=0. If Pk(Prec) denotes the proba-
bility of Ek when the probability of reception is Prec, one can
write

E[D] =
L

∑
k=0

E[D|Ek]Pk(Prec) =
L

∑
k=0

DkPk(Prec) (1)

where Dk is the distortion obtained when Ek happens. Since
Pk(Prec) is a complex function of Prec, (1) is difficult to ana-
lyze. However, it is possible to approximate (1) with a simpler
expression that gets close to (1) when N goes to infinity.

The idea is that if N is large, because of the properties of
the erasure code, we expect to be able to recover segment k if
Prec > pk := 1/rk and not recovering it if Prec < pk. In other
words, we expect that if pk < Prec < pk+1 the event Ek+1 will
happen with probability close to 1. As a consequence, the
probability Pk(Prec) can be approximated with

Pk(Prec)≈ χk(Prec) (2)

where χk(x) = 1 if pk ≤ x < pk+1. By using (2) in (1) we
obtain a step-wise approximation to E[D]

E[D]≈
L

∑
k=0

Dkχk(Prec) (3)

Intuitively, we expect that approximation (3) will “get better”
as N increases. In order to make this statement more precise,
we define a measure of “closeness” mutated, in spirit, from
filter design.

Definition 1. Let I ∈R be an interval, let S = {s1, . . . ,sA}⊂ I
be a set of points of I, let ε > 0 and let Sε := ∪A

k=1[sk−ε,sk +
ε]. We will say that f : I→ R and g : I→ R are (S,ε)-close,
denoted as f ∼

S,ε
g, if

sup
x 6∈Sε

| f (x)−g(x)| ≤ ε (4)

Informally, f and g are (S,ε)-close if they do not differ
more than ε everywhere, save on set Sε that plays a role sim-
ilar to transition bands in filter design. See Fig. 3.

Property 1. For every choice of {q1, . . . ,qL}, S := {p1, . . . , pL}
and ε it is possible to find N large enough such that

D(Prec) =
L

∑
k=0

DkPk(Prec) ∼
S,ε

L

∑
k=0

Dkχk(Prec) (5)

The proof of Property 1 is not difficult, but it is long and
it is not given here. Since intervals [pk, pk+1) are disjoint, we
can write the “operative” SNR, SNRop as

SNRop(p) =
L

∑
k=0

SNR(ckRtot/ρ +1)χk(p) (6)

that is, SNRop is a step-wise function too. See Fig. 4
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Fig. 3. Example of two functions f and g that are (S,ε)-close
with S = {x1,x2}.

p2 p3 p4 p5 = 1
P rec

SNR

(dB)
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r 1

SNR(p 2) − SNR(r1)

r 2 r 3
r 4

Fig. 4. Step-wise approximation of the Prec-vs-SNRop curve
and illustration of the distance between the SNRop and SNRth.

3.4. Optimal Encoder Design

In order to find the “best” EUEP encoder we need a metric to
measure the distance between the operative SNR function (6)
and the best theoretical signal-to-noise ratio. Since SNRop in
(6) is a function of p, it is convenient to rescale the best theo-
retical SNR in order to make it function of p too. Therefore,
we define SNRth : [0,1]→ R, SNRth(x) := SNR(xRtot). Our
objective function is

∆SNR := ‖SNRth−SNRop‖∞ (7)

Since SNRop is step-wise, the maximum error is achieved on
the step borders, so that (see also Fig. 4)

∆SNR = max
k=1,...,L

SNR(pk+1Rtot)−SNR(ckRtot/ρ), (8)

where we set pL+1 = 1. At large bit-rates SNR(x) ≈ ax+ b,
for some a,b ∈ R and (8) becomes

∆SNR ≈ aRtot max
k=0,...,L

pk+1−
ck

ρ
.

Since a > 0, we deduce that minimizing (8) is approximately
equivalent to minimize

∆p := max
k=0,...,L

pk+1−
ck

ρ
(9)

that depends only on qi and pi.
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Fig. 5. Plot Prec-vs-SNR of the best solution for L = 100 and
L = 10 compared with the best theoretical performance.

3.4.1. Numerical optimization

We carried out the numerical optimization of (9) using the
fminimax function of R©Matlab for several values of L un-
der the constraints 0 ≤ p1 < · · · < pL < pL+1 = 1, qi ≥ 0,
∑

L
i=1 qi = 1. Fig. 5 shows the results obtained for1 L = 100

and L = 10, with a comparison with the theoretical limit. In
Fig. 5 the vertical axis has been normalized by SNRth(Rtot)
so that the range of the vertical axis is [0,1] and the ideal
curve is (in the large bit-rate approximation) a 45-degree line.
As it can be seen, the performance curve of the best EUEP
is parallel to the theoretical limit, with an horizontal offset
approximately equal to 0.37, almost insensitive to the value
of L. The performance for L = 10 are slightly worse than
for L = 100, since the maximum distance from the theoreti-
cal curve is larger. This number quantifies the price one has
to pay in order to protect simultaneously against different P̀ .
In particular, for a certain Prec, the user will experience the
same quality as in system specifically designed to protect er-
rors corresponding to P′rec = Prec−0.37.

4. CONCLUSIONS

We defined the new concept of perfectly reliable encoder
(PRE) in the context of erasure channels and proposed an ex-
treme unequal error protection (EUEP) encoding scheme as
a possible approach toward the design of a PRE. We derived
models that are used to optimize the performance of EUEP.
We found that the best EUEP has a Prec-vs-SNR curve paral-
lel to the optimal curve. This shows that the performance of
the best EUEP is qualitatively similar to the theoretical limit,
with a relatively high gap with respect to a system designed
for a particular Prec. Future research will explore the possibil-
ity to use other approaches to the design of a PRE, in order to
possibly reduce this gap.

1Similar results are obtained for L ranging from 10 up to thousands.
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