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ABSTRACT

We consider sub-Nyquist sampling and Compressed Sensing (CS)
for channel estimation in Ultra Wideband (UWB) communication
systems, by exploiting the sparse nature of the channel impulse re-
sponse. Receiver hardware schemes are presented that directly sam-
ple the analog channel output at rates far below Nyquist and allow
access to a predefined subset of channel Fourier coefficients. CS
methods are then applied to these coefficients in order to estimate
the unknown channel. Simulations on Channel Model (CM) 1 of the
IEEE 802.15.4a standard show that estimation is possible from low
rate samples with little performance degradation paving the way to
sub-Nyquist UWB channel sounding.

Index Terms— Channel Estimation, Compressed Sensing,
Sparse Recovery, Ultra wideband signaling, Analog to Projections

1. INTRODUCTION

Ultra Wideband wireless communication [1] is a promising tech-
nique for conveying high rate data over short length wireless links.
It gained interest since the US Federal Communications Commis-
sion [2] allowed usage of the unlicensed 3.1 — 10.6 GHz spectrum
under restrictive power masks. Modulating low rate data onto larger
bandwidth encapsulates many advantages, including frequency di-
versity, low outage link rate, and coexistence with other users. Di-
rect Sequence (DS) spread spectrum is a common way to broaden the
bandwidth, resulting in high processing gain that allows to suppress
effective noise power. The entire 7.5 GHz unlicensed spectrum is
too wide for current Analog to Digital Convertor (ADC) technology.
For some needs, enough frequency diversity exists in smaller band-
widths. Following recommandations in [3], the spectrum may be
sliced into nonoverlapping bands of 500 MHz (minimal bandwidth
to be categorized as UWB), and operation can be restricted to one of
these bands.

Signaling over ultra wideband width results in very short time
pulses (500 MHz translates into pulses of 2 ns). Effectively, this is
the sampling rate needed to satisfy the Nyquist sampling theorem
[4], where we assume down conversion is performed from the radio
carrier into baseband. All channel effects beyond this bandwidth
are irrelevant since power is not allocated on them. The bandwidth
affects the performance through time resolvability: the higher the
bandwidth, the denser the time grid of the samples.

Indoor wireless mediums are dominated by many signal echoes,
mainly caused by reflection, diffraction, and scattering of the elec-
tromagnetic waves. The varying nature of a typical environment has
channel coherence time of milliseconds, enabling to consider packet
based transmissions with the assumption that during a packet the
channel is stationary. The channel can then be modeled as linear
and time invariant and all calculations can be performed in the dis-
crete channel model. If echoes happen to arrive in a time difference
less than the sampling period, they are unresolvable and are summed
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into a single tap of the discrete channel [5]. The summation can be
destructive or constructive depending on their phase. The resulting
discrete channel impulse response was studied in [6]. It was shown
that several 802.15.4a channel models [7] [8] are sparse in the sense
that many entries are close to zero.

Motivated by this observation, the emerging field of Compressed
Sensing (CS) [9] [10] [11] can be used to estimate the discrete chan-
nel impulse response. CS aims to recover an underlying signal z €

C" from linear measurements y = Az where A € C**¥ is called
the measurement matrix, and M < N. The noisy version
y=Az+z, ey

where z is noise, is more common in real life measurements. In
general, this problem is underdetermined and has infinitely many
solutions. However, if the vector x is sparse, namely it contains
a small number of nonzero values and A satisfies appropriate con-
ditions [12], then with high probability only one sparse signal will
match y. Sparse recovery techniques can then be used to estimate
x. Here we consider Orthogonal Matching Pursuit (OMP) [13] as a
representative greedy method.

There are many prior papers that address the use of CS for UWB
channel estimation [14] [15] [16] [17] [18]. However, these papers
all treat a discrete version of the problem and do not directly address
the issue of sub-Nyquist sampling. Instead, they assume that they are
given measurements y = Ax in which A is a random sensing matrix.
In contrast, we provide concrete analog sampling methods to obtain
the low rate samples from the continuous-time channel output. In
our setting, the matrix A results from the hardware approach and
corresponds to rows of a Fast Fourier Transform (FFT) matrix. This
structure is heavily exploited to simplify the processing chain. We
follow previous work on sub-Nyquist sampling [11] [19] and adapt
the ideas and hardware prototypes to our context. Our approach is
based on a combination of sub-Nyquist sampling methods and CS
recovery techniques all operating in the frequency domain.

The goal of the paper is to numerically examine whether chan-
nel estimation in UWB models is a good candidate for adopting sub-
Nyquist sampling and CS methods. To this end, we consider a base-
band system using standardized 802.15.4a channel models. We then
propose several practical hardware structures that implement sub-
Nyquist sampling and explore their performance in conjunction with
CS recovery techniques. Simulations show that channel estimation is
possible from low rate samples with little performance degradation.

2. CHANNEL MODEL

We focus on the complex baseband of the traditional UWB channel
model under packet based communication. The channel is assumed
to be linear and time invariant within a single packet. The channel
output signal y(t) is assumed to contain L echoes of the channel



input z(t) according to

y(t) = au(t —7) + 2(t), 2)
=1

where o; € C is the /th multipath gain coefficient, 7; > 0 is the
delay of the /th multipath component and z(t) is zero mean circular
symmetric additive white Gaussian noise with variance % per real
axis. The underlying continuous channel impulse response and its
Fourier Transform are

L L
hen(t) =Y ud(t—m), Hen(f) =Y a3
=1 =1

The parameters {«;, 7;} are unknown to the transmitter and the re-
ceiver, and are fixed within a single packet.

Since practical systems are confined to band limited signals, we
treat the 500 MHz bandlimited version of (3) as the full bandwidth
signal, and all frequency effects beyond it are suppressed. We can
then model the channel by its discrete counterpart

N—-1
hm] = > hidfm—i], m=0,...,N—1, 4)
1=0

where each h; may represent several (or none) multipath compo-
nents. The channel h[m)] is obtained by sampling a lowpass filtered
version of hep (t) at the Nyquist rate. We assume that the L continu-
ous time echoes are mirrored into X < L non zero valued entries of
{h[m]}. Our main goal is to recover h[m] from low rate samples of
the channel output. Throughout the paper we use the IEEE 802.15.4a
model of UWB channels [7] focusing on CM-1. This model is suited
to Line of Sight (LOS) indoor residential links.

3. SIGNALING UNDER NYQUIST SAMPLING

3.1. Transmitter

In order to enjoy the rich diversity, transmitted symbols are mapped
into direct sequence chips aps[n],n = 0,..., N — 1 of length N.
We chose aps[n] to have autocorrelation with low sidelobs around
the main tap. Ipatov [20] sequences are trinary valued {—1,0, +1}
with perfect cyclic autocorrelation:

-

Rpsin] = 3 apslmaps|((m — n)n] = llal3dln] &)

=0

where ((-))n denotes the modulo N operator. This property is
crucial for suppressing interchip interference and allows proper de-
spreading. The transmitter (left block in Fig. 1) upsamples QPSK
symbols s € {£1 £ 3} to chips, spreads them with the DS, con-
verts to analog via gsr(t) and transmits over the baseband channel.
This scheme is both for piloting when repeating the same symbol
sp = 1 + j and for data transferring when the symbols take any
allowed value. The signal is multiplied by « to meet a desired Signal
to Noise Ratio (SNR) working point. In this scheme, the analog
signal bandwidth T ! = 500 MHz (Tt is the chip period time) is
N times wider than the symbol rate, and the total analog signal is

N-1

’st[i} Z gsr(t —mTc —iNTc)aps[m].

1E€EL m=0

z(t) =
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3.2. Estimation at Receiver

To detect information symbols, the receiver needs to obtain the
channel profile {h[n]}"_. To this end, the right block in Fig. 1
shows Nyquist channel estimation. After applying a matched filter
gumr(t) = gsr(—t) on the full Nyquist bandwidth, the signal is
sampled via an ADC of rate T, . The samples are called chips.
Since the channel impulse response has memory, each transmitted
chip has influence on up to /N received chips. A DS matched filter
amr[n] = aps[—n] is used for despreading. The output is given
by (signals are in Fig. 1)

cn] = amrn]*G(t)|t=n1e
aMF[n] * (g]wF * ((hch * gSF * fz) + Z)(t)) |t:"TC
n=0,...,N—1

vsp - |lall3 - h[n] + Z[n],

where 2 is the discrete noise shaped by the shaping matched filter,
sampled and filtered by the allpass aasr. The last equality follows
from the fact that while piloting the transmitter is N periodic, thus
linear convolution is the same as cyclic convolution (5). The ana-
log filters are chosen such that their equivalent meets the Nyquist
intersymbol interference criterion gsr (t) * grvr(t)|t=nte = (]
for n € Z. Averaging N, pilot symbols results in channel profile
estimation

N,
1 p

hln] WZC@N-FTLL n=20,...,N—1.
p=1

_7‘5;0

In a noiseless environment, h[n] = h[n] providing perfect recovery.

Many values in fz[n] may have low amplitudes. By discarding
them [21], focus is drawn to higher fingers. A typical number is
to use only taps whose values are greater than —10dB in power (a
ratio of about 0.31 in amplitude) of the highest power finger. Denote
the fractional threshold operator T; : CN — CV with parameter
¢ € [0, 1] as the entry-wise function

Blnl, i [hfn]] > C - maxm—o,...x—1 [hm]
0, else ’

(Te (W), = {

For brevity, we set h+ = T¢ (h), and denote its nth entry by ht .

We compare 7¢ (h[n]) and Tz (h[n]) for two reasons. First, true
wireless discrete channel impulse responses may have a vast number
of taps with low amplitudes, which contribute little to the total en-
ergy capturing. Second, the additive noise is spread across all chips
and has the same variance. Chips with high amplitude are more ro-
bust than low amplitude ones, so that keeping the low amplitude taps
may result in noise enhancement. We consider two metrics to mea-
sure the estimation quality: Energy Capture (EC) and Root Mean
Square Error (RMSE)

R{< hr,hr >}

SC(E) = Sl el ©
RMSE (h, fz) = % Nz_l ‘hm bl
n=0

4. SUB-NYQUIST FRAMEWORK

4.1. Architecture

The large bandwidths associated with UWB signals necessitate high
sampling rates greater than 15 ! = 500 MHz. To reduce these rates
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Fig. 2. Channel estimation block diagram for Xampling.

we exploit the channel sparsity. It has been shown in prior work [22]
[19] that channel models of the form (3) can be recovered from M
Fourier coefficients as long as M > 2K. Furthermore, explicit low
rate sampling methods, referred to as Xampling, have been proposed
that allow to directly access M Fourier coefficients from only M
time-domain samples. This results in a sampling rate that is far lower
than the Nyquist rate.

For now, we assume the Xampler (Fig. 2) provides access to M
of the N coefficients, using a low rate ADC (with rate equal to a
portion of M /N of the Nyquist rate), and proper analog and digital
processing. The transmitter may change its direct sequence to make
the Xampling easier and power effective. In particular, we will not
transmit on the FFT coefficients that are not selected. Xampling in
the Fourier domain has intrinsic structure, in contrast to random sam-
pling, which enables efficient analog acquisition, digital design and
low memory resources. We discuss the analog acquisition methods
in Section 4.2. Below we formulate the resulting sparse recovery
problem after sampling, assuming that the receiver has access to M
FFT coefficients of the received signal.

Suppose we are given the Fourier coefficients

Y[k] = s,-H[kAps[k]+ Z[k], k€L, ®)

where all capitalized signals are the FFT of their matched timed sig-
nals. The set £ is an M-length subset of {0, ..., N — 1} where the
ratio ¢ = N/M is called the reduction factor. For simplicity, we
assume that g is an integer. If ¢ = 1 then our approach is equivalent
to Nyquist sampling. Given Y'[k], we seek the sparsest h[m)] that
satisfies (8). To this end, we first filter the sampled signal with the
matched DS Ay r = A} and descale the piloting symbol to yield

Y[k]Abs(k] skl
— el — HIlk 4+ =2
PR von 1 Ell & R v o
Here y is the M-length measurements vector based on scaled fre-

quency values Y'[k]. Moving to matrix notation as in (1), we have
that

ylk] = Z[k], kecL.

y=Fh+z ©)
where h is the underlying signal, Fz € CM*¥ is the punctured FFT
matrix with rows indexed by £, and z is a noise term. Since the DS is
an allpass, the noise remains white. Thus, our problem becomes that
of determining a sparse vector h such that Fzh best approximates
y. We can find such an h for example using OMP.
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4.2. Analog to projections

Several options for the analog to projections in Fig. 2 are depicted
in Fig. 3. For readability, we use Tnyq = f]f]i,Q as the time pe-
riod of the full Nyquist sampling, which is also equal to 7. We
now consider several structured ways to retrieve M projections on
the FFT subset £. The transmitter uses a different direct sequence,
which is the result of increasing energy at the active set of FFT co-
efficients in £ on behalf of the complementary set. The new N-
length direct sequence bps (Fig. 2) is the outcome of the masking
bps = IFFTxn {FFTn {aps} [k] - 1{kery } where 1.y is the indi-
cator operator.

1. Direct Sampling: Direct sampling [23] uses the relation-
ship between the FFT coefficient and the analog time do-
main signal. M analog branches are needed, each is mod-
ulated (Fig. 3(a)) by a complex exponential singleton s;(t) =
exp (—127 fnyLit/N) and integrated over NTny q. A to-
tal of M /N fny o samples per time unit are collected.

2. Low frequencies: If the active set of £ contains consecutive
values associated with the low frequencies, the simplest ac-
quisition is to antialiase the 1/qfny ¢ band, sample it by a
low rate ADC and then filter with the low pass version of the
MF, accumulate and FFT it as in Fig. 3(b).

3. Four bands: Multi band sampling [19] (where four here
was chosen arbitrarily, governed by hardware resources), is
a more distributed version of the abovementioned low fre-
quencies sampling. The M coefficients are grouped into four
almost equal size blocks, and those blocks are spread over
the full frequency aperture to increase frequency aperture.
The analog signal is split into 4 analog branches, each is de-
modulated into baseband, lowpass filtered and sampled with
rate of 1/(4q) - fny (Fig. 3(c)). The DSP transforms to the
frequency domain, and demaps each of the sample groups
according to their FFT locations.

4. Foldable Sampling: Seeking for wide frequency aperture
alongside a single analog branch, the byproduct of aliasing
through sampling can be of interest [24]. The entire N taps
are split into g groups of M each. When sampling on a band-
width of 1/q - fny o, M taps are aliased on top of each other
and the ADC can access only their summation. If on each
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Fig. 4. Performance versus SNR and reduction factors for CM1 channel ensemble. The dashed line is associated with the full bandwidth non
sparse restrictive system as in Fig. 1. It is SNR dependent and g independent. The solid lines describe CS schemes using OMP.

entry only one of the g aliases is active, then this scheme
gives direct access to M FFT entries. Proper DSP can then
be employed, by FFT of the samples, demapping to the N-
length domain, accumulation and DS matched filtering in the
frequency domain. Note that the ADC rate is ¢ times less
than the analog bandwidth (fny ¢ matched shaping filter is
needed to suppress noise outside the Nyquist bandwidth) as
in Fig. 3(d). The active set £ should be self-foldable, i.e.
lLA{m+M i} g| =1form=0,...,M — 1.

5. NUMERICAL RESULTS

In order to support vast scalability, N was chosen to be 511, and 7
reduction factors were examined ¢ = 1, ..., 7. The high value of N
allows even for the highest ¢ = 7 to remain with enough projections
M = 73. For reduction factors ¢ which do not divide N, M was set
to be the nearest integer value. The direct sequence aps was cho-
sen to be a trinary Ipatov sequence, and has 256 non zero elements.
The number of repeated pilot symbols /N, was set to 200. The shap-
ing and matched filters are truncated sincs with 16 sidelobes (almost
perfect low pass filters over 500 MHz). The continuous time line
is modeled under 8 GHz grid, which is 16 times denser than a sin-
gle Nyquist chip. On this 125 ps spaced tap line, 100 realizations
of hen(t) were drawn according to CM1 statistics via a MATLAB
code provided by [7], where random complex phase was employed
to each of the multipath components. For each channel realization,
a unified simulation run with Nyquist bandwidth lowpass as analog
processing, full rate ADC, and serial to IV blocks, piling N, symbols
followed by FFT-N. On the output, for each of the abovementioned
cases of choosing the active set, a discard operation of L values was
perform in order to limit the total access to FFT coefficients. SNR is
treated as F /No, which means that per SNR point all output power
signals z(t) of any of the cases are gained to the same value. This
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means that the higher the reduction factor, the higher the spectral
density (measured in [mW /MHz]) on the active frequencies. The
sparsity level K was set to 20, a typical value observed over channel
realizations analysis.

Fig. 4 shows performance dependancy on SNR and reduction
factors. Intuitively, the direct random sampling and foldable sam-
pling show better performances than low frequencies and the four
bands samplng. The Nyquist scheme has superior performance, and
for high SNRs the sub-Nyquist schemes are limited in their recon-
struction capabilities. Alas, for ¢ = 2 the energy capture degradation
is indistinguishable for the distributed schems while keeping small
negative impact on the RMSE. For ¢ = 7 the effects are more promi-
nent, yet a large portion of energy can still be recovered.

6. DISCUSSION

This work considers applications of CS to UWB channel estimation.
Hardware sampling schemes are described in two stages. First, ana-
log acquisition using low rate ADCs is performed giving access to
projections of the FFT domain. This is followed by sparse recovery
methods to estimate the channel profile. The simplest low rate sam-
pling method is narrowing the bandwidth, which gives poor results
even for high SNR. Distributing the total bandwidth across a small
number of bands does not help much. It is evident that highly dis-
tributed FFT coefficients give better reconstruction capabilities. Two
such methods (direct sampling and foldable sampling) are analyzed.
They both give similar modest degradation from the full sampling
rate. For reduction of ¢ = 2, almost all energy is captured and for
g = T only 10% of energy is dropped. For high reduction factors
one should consider the direct sampling since M analog branches is
low while keeping noise low. For lower reduction factors the fold-
able sampling is advantageous, yet attention should be drawn to SNR
issues such as dealing with the full band noise.
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