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ABSTRACT

We present a low complexity soft detector for multiple-input

multiple-output (MIMO) channels. Our proposed minimum mean

square error successive interference cancellation (MMSE-SIC) de-

tector is based on a regularization mechanism which reduces error

propagation in the channel iterative decoder. Although our proposed

detector is easy to implement and has a complexity order that is cu-

bic in the number of transmit antennas, it can reach the performance

of the soft max-log maximum-likelihood detector (MLD) under re-

alistic system assumptions, as demonstrated in our simulations.

1. INTRODUCTION

It is widely acknowledged that the achievable data rate over a point-

to-point link can be increased significantly, when multiple antennas

are used for both transmission and reception of a signal [1]. Com-

pared to conventional single antenna systems, signal processing is

more complex and requires more computational effort. In real ap-

plications, optimal transmission techniques can often not be applied

due to cost and complexity constraints.

As an alternative to optimal detection, linear receive filters can

be used to equalize the MIMO channel under low computational

cost. Linear filtering is especially advantageous w.r.t. soft detection

in MIMO receivers, since the computation of the soft information in

terms of the log-likelihood ratios (LLRs) is performed symbol-wise.

As a consequence, the complexity order of the LLR computation

rises only linearly with the number of transmit antennas.

A straight-forward extension of linear filters is known as suc-

cessive interference cancellation (SIC) and usually comes with a

moderate increase in computational complexity. The idea of SIC

is to detect and cancel the interfering signals successively. Dur-

ing the SIC, the linear filter is adapted to the residual interference

signal. As a result, the performance of the detection of the data

is improved in comparison to stand-alone linear filtering. The ap-

plication of this principle is manifold, it, e.g., has been applied

to remove inter-cell interference in a cellular network [2]-[3], in-

terference from neighboring sub-carriers in orthogonal-frequency-

division-multiplexing (OFDM) systems [4]-[5], relay systems [6]-

[7], or to obtain channel estimates in the presence of interferers [8].

In this paper, we focus on the soft MIMO MMSE-SIC detection

of a coded point-to-point MIMO signal in the presence of additive

white Gaussian noise (AWGN). For uncoded MIMO detection, the

application of SIC in this case is most commonly known under the

name VBLAST [9], which has been found inapplicable in its plain

version to iterative receiver designs due to error propagation in the

transmit code block [10]. The application of the MMSE-SIC prin-

ciple to multi-user detection in a coded DS-CDMA system has been

presented in [11] and [12]. Both approaches use the MMSE filter to

regularize the detection error by using a statistical model of the error.

This technique applied to point-to-point MIMO detection has been

presented in [13] and [14] for non-iterative receivers, using a table

lookup technique for 4-QAM and 16-QAM alphabets. A method to

prevent error propagation using LLRs has been discussed in [15].

In this work, we take a different approach to the problem, i.e.,

we delay the occurence of the first detection error during the SIC

using an adaptive MMSE filter. The filter takes into account the dis-

tribution of the first detection error, which we derive for the AWGN

case. The algorithm we propose is independent of the modulation

order, the channel code, and the code length, and can be applied to

all regular QAM alphabets. Furthermore, the detector we present

requires no a-posteriori information from the channel decoder and

allows the design of a very low complexity soft MIMO receiver. The

simulation results provided in this paper show, that a significant gain

in terms of reduced number of bit errors can be achieved, even when

only imperfect channel state information (CSI) is available at the re-

ceiver.

We use lowercase-bold and capital-bold characters for vectors

and matrices, respectively. We denote the complex conjugate as (·)∗,
the transpose as (·)T, the conjugate-transpose as (·)H, ei denotes the
unit norm vector that is all 0 but 1 at the i-th position, [·]i gives the
ith diagonal element of a square matrix, E [·] denotes the expectation,
and Pr (·) denotes the probability measure.

2. SYSTEMMODEL

We consider a MIMO-OFDM system withNT transmit antennas and

NF orthogonal sub-carriers. The coded binary data vector corre-

sponding to the i-th transmission slot in time domain is denoted as

ci ∈ B
NTNF log2 |M| where B = {−1,+1}. The length of ci is fur-

ther determined by the modulation order |M|, where M denotes the

quadrature amplitude modulation (QAM) alphabet. In order to gen-

erate a transmit waveform signal, ci is divided into smaller binary

vectors ct,f,i ∈ B
log2 |M|. The binary vector ct,f,i at the time in-

stance i is associated to the t-th transmit antenna and the f -th OFDM
sub-carrier, with t ∈ {1, . . . , NT} and f ∈ {1, . . . , NF}.

Each binary vector ct,f,i is mapped to a complex scalar transmit

symbol st,f,i ∈ M by the invertible function m(·), i.e.,

st,f,i := m(ct,f,i) ∈ M. (1)

For every OFDM sub-carrier f , sf,i = [s1,f,i, . . . , sNT,f,i]
T ∈ M

NT

denotes the vector of symbols transmitted over the NT antennas that

is obtained via

sf,i := m(cf,i) = [m(c1,f,i), . . . ,m(cNT,f,i)]
T ∈ M

NT (2)

where cf,i = [c1,f,i, . . . , cNT,f,i]
T is the binary vector correspond-

ing to sub-carrier f and time slot i.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 1980



mapper

N
T
an
te
n
n
as

mapper

subchannel

subchannel

A
n
te
n
n
a

m
ap
p
er

subcarrier

NF OFDM

s1,1,ic1,1,i

cNT,1,i sNT,1,i

ci

c1,i

cNT,i
modulator

modulator

|M|-QAM

|M|-QAM

sNT,NF,i

s1,NF,ic1,NF,i

cNT,NF,i

CP/IDFT

CP/IDFT

Fig. 1: Transmitter signal flow from the coded binary information ci
at time instance i to the MIMO antenna backend.

The time domain transmission signals are computed by

the inverse discrete Fourier (IDFT) transform of the symbols

st,1,i, . . . , st,NF,i and a cyclic prefix (CP) is inserted. Fig. 1 depicts

the described signal flow from the binary input data vector ci to the

transmit antenna array. We employ the usual linear MIMO model

∀i, f : yf,i = Hf,isf,i + nf,i. (3)

with the channel matrix Hf,i ∈ C
NR×NT and the zero-mean

Gaussian noise nf,i ∈ C
NR whose covariance matrix is Nf,i =

E
[

nf,in
H
f,i

]

and that is not correlated over time and frequency.

After reception and CP-removal, the discrete Fourier transform

(DFT) is applied to the signals of the NR receive antennas. We

assume that an out-dated but otherwise perfect channel estimate

Ĥf,i = Hf,⌊i/NP⌋NP
is made available periodically every NP-th

time slot to the receiver via a pilot channel. Then, in principle, an

array of NF parallel MIMO detectors computes the LLRs for the in-

dividual bits of ct,f,i using the receive vector yf,i with no exchange

of information among the detectors or a-posteriori information from

the channel decoder. The single-shot LLRs λ(ci) are then passed to

the decoder. The signal flow of the receiver is depicted in Fig. 2.

3. MIMO SOFT DETECTION

Without feedback of a-posteriori information from the channel de-

coder, the optimal MIMO detector computes the LLR of the n-th bit
of cf,i according to the MAP rule as

λcf,i
(n) = ln

Pr
(

eTncf,i = +1 | Ĥf,i,yf,i

)

Pr
(

eTncf,i = −1 | Ĥf,i,yf,i

) . (4)

The probability that the i-th bit eTncf,i is v ∈ B can be written as
∑

m(x)∈M
NT | eTnx=v exp

∥

∥ − N
−1/2
f,i

(

yf,i − Ĥf,im(x)
)∥

∥

2

2
where

the sums of exponentials can be approximated by their largest sum-

mands (max-log approximation, MLA), i.e.,

λcf,i
(n) ≈ λ̃cf,i

(n) = ζcf,i(n,−1)− ζcf,i(n,+1) (5)

with search for the closest symbol vector (v ∈ B)

ζcf,i(n, v) = min
m(x)∈M

NT | eTnx=v

∥

∥N
−1/2
f,i

(

yf,i − Ĥf,im(x)
)∥

∥

2

2
. (6)

Note that the computational complexities of (4) and (6) rise expo-

nentially in NT. For a high signal-to-noise ratio (SNR) the compu-

tational complexity of the MLA approach can be reduced by using

a sphere decoder (see e.g., [16], [17]) for finding the closest sym-

bol vector as shown in [18]. The same authors suggest a parallel
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Fig. 2: Receiver signal flow from the receive antenna array to the

log-likelihood ratios λ(ci) at time instance i.

approach for computing (6) without requiring a repeated tree search

for each individual bit in [19], which mitigates the increase of com-

putational costs w.r.t. using the sphere decoder for hard detection.

3.1. Linear MMSE Soft Detection

In linear detection, a filter G is applied to the received signal yf,i ,

e.g., the MMSE filterGMMSE,f,i = argminG E
[

‖Gyf,i − sf,i‖2
]

,
to obtain an estimate for sf,i. For the soft detection of the transmit-

ted bit vectors, the LLR computation is based on symbol-by-symbol

hypothesis pairs instead of vector-by-vector pairs as in MAP detec-

tion. With gH
MMSE,t,f,i = eTtGMMSE,f,i, i.e., the MMSE filter to es-

timate the symbol st,f,i sent from the t-th transmit antenna, and the

corresponding channel vector ĥt,f,i = Ĥf,iet, the LLR of the n-th
coded bit contained in the symbol st,f,i can be found to be

˜̃
λct,f,i

(n) =
1

1− gH
MMSE,t,f,iĥt,f,i

×
(

min
m(x)∈M | eTnx=−1

∣

∣

∣
g
H
MMSE,t,f,i

(

yf,i − ĥt,f,im(x)
)

∣

∣

∣

2

− min
m(x)∈M | eTnx=+1

∣

∣

∣
g
H
MMSE,t,f,i

(

yf,i − ĥt,f,im(x)
)

∣

∣

∣

2
)

. (7)

Note that (7) is based on the assumption that the noise and interfer-

ence are complex Gaussian with variance equal to the MMSE when

estimating st,f,i. The major benefit of soft linear MMSE detection

is that the computational complexity of (7) rises only linearly inNT.

For a detailed discussion of the soft MMSE detector see, e.g., [20].

3.2. MMSE-SIC Soft Detection

A straightforward extension of the linear receiver design is the SIC

VBLAST detector, which approximates the LLRs by

˜̃
λDF,cµ(t),f,i

(n) =
1

1− g
(t),H
MMSE-SIC,µ(t),f,iĥµ(t),f,i

(8)

×
(

min
m(x)∈M | eTnx=−1

∣

∣

∣
g
(t),H
MMSE-SIC,µ(t),f,i

(

y
(t)
f,i − ĥµ(t),f,im(x)

)

∣

∣

∣

2

− min
m(x)∈M | eTnx=+1

∣

∣

∣
g
(t),H
MMSE-SIC,µ(t),f,i

(

y
(t)
f,i − ĥµ(t),f,im(x)

)

∣

∣

∣

2
)

with gMMSE-SIC,f,i = eTt argmin
G
E
[

‖Gy
(t)
f,i − s

(t)
f,i‖2

]

. The LLR

computation (8) is almost identical to that of the linear equalizer

(7), with the exception that the detection is performed on the receive

vector

y
(t)
f,i =

{

yf,i if t = 1

y(t−1) − ĥµ(t−1),f,i ŝµ(t−1),f,i otherwise.
(9)

1981



ℓ X ≈ Pr
(

sµ(n) = ℓ|s̃µ(n)

)

ŝµ(n) + a E PR+(1− PI+ − PI−)
ŝµ(n) − a D PR−(1− PI+ − PI−)
ŝµ(n) + j a B PI+(1− PR+ − PR−)
ŝµ(n) − j a G PI−(1− PR+ − PR−)

ŝµ(n) + a+ j a C PR+PI+

ŝµ(n) − a+ j a A PR−PI+

ŝµ(n) + a− j a H PR+PI−

ŝµ(n) − a− j a F PR−PI−

Table 1: Detection error event probabilities

G
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Fig. 3: Decision borders for the set Nŝµ(t),f,i
. Solid lines show the

edges of the half-planes of the error probability measure.

The interference cancellation can be highlighted by redefining the

transmitted symbol vector as

s
(t)
f,i = sf,i −

t−1
∑

j=1

eµ(j)sµ(j),f,i. (10)

For an efficient computation of the VBLAST-type detection order

µ(t) and the MMSE-SIC filter g
(t),H

MMSE-SIC,µ(t),f,i
, see, e.g., [21]. In

the interference cancellation process (9),

ŝµ(t),f,i = argmin
s∈M

∣

∣g
(t),H
MMSE-SIC,µ(t),f,i

(

y
(t)
f,i − ĥµ(t),f,is

)∣

∣

is the hard estimate of sµ(t),f,i. Although above derivations were

based on the MMSE-SIC filter, with β = g
(t),H
MMSE-SIC,µ(t),f,iĥµ(t),f,i

we employed the unbiased MMSE-SIC filter

g
(t),H
unbiased-MMSE-SIC,µ(t),f,i = β−1

g
(t),H
MMSE-SIC,µ(t),f,i (11)

which increases the mean square error and reduces the SNR. How-

ever, it also reduces the error probability (see [22]).

3.3. MMSE-SIC Soft Detection with Error Regularization

Our proposed technique is based upon taking into account that errors

can occur in the interference cancellation (9). We therefore rewrite

the MIMO model as

y
(t)
f,i = Hs

(t)
f,i +Hd

(t)
f,i + nf,i (12)

where d
(t)
f,i =

∑t
j=1(sµ(j),f,i − ŝµ(j),f,i)eµ(j) is the detection error

vector during the SIC detection. Note that d
(t)
f,i is zero where s

(t)
f,i is

non-zero and vice versa. Since s
(t)
f,i is unknown at the receiver, d

(t)
f,i

cannot be observed at the receiver either. However, only statistical

knowledge of d
(t)
f,i is required to regularize the error. With (12), the

MMSE-SIC filter with error regularization (ER) reads as

G
(t)
MMSE-SIC-ER,f,i = argmin

G

E

[

∥

∥

∥
Gy

(t)
f,i − s

(t)
f,i

∥

∥

∥

2

2

]

=
(

H
H
N

−1
f,i H +

(

S
(t)
f,i +D

(t)
f,i

)−1
)−1

H
H
N

−1
f,i

(13)

with S
(t)
f,i = E[s

(t)
f,is

(t),H
f,i ] and D

(t)
f,i = E[d

(t)
f,id

(t),H
f,i ], Note that we

have neglected covariance matrices E[d
(t)
f,in

(t),H
f,i ] and E[d

(t)
f,is

(t),H
f,i ]

in (13) for the sake of simplicity, which are non-zero when using

MMSE filter on low SNR.

Since d
(1)
f,i = 0, g

(1),H

MMSE-SIC-ER,µ(1),f,i = eTµ(1)GMMSE-SIC,f,i

can be computed as the standard unbiased MMSE filter (11).

Then the first symbol can be detected and the interference

can be cancelled [cf. (9)]. With the filter output s̃µ(1),f,i =

β−1g
(1),H
MMSE-SIC-ER,µ(1),f,iyf,i and the hard estimate ŝµ(1),f,i, we can

regularize the filter eTµ(2)G
(2)
MMSE-SIC-ER,f,i [see (13)] taking into ac-

count a possible detection error by updating the elements of D
(2)
f,i .

Thus, we choose the µ(1)-th diagonal element of D
(2)
f,i according to

D
(t)
f,i =

t−1
∑

j=1

Eµ(j)

∑

x∈M

|x− ŝµ(j),f,i|2pµ(j),f,i(x) (14)

≈
t−1
∑

j=1

Eµ(j)

∑

x∈M∩Nŝt

|x− ŝµ(j),f,i|2pµ(j),f,i(x) (15)

with pµ(j),f,i(x) = Pr
(

sµ(j),f,i = x | s̃µ(j),f,i
)

and the matrix

Eµ(j) = eµ(j)e
T
µ(j). We omit the off-diagonal entries of D

(t)
f,i since

they seem to have a negligible impact on the regularization.

By treating the multimodal conditional Gaussian distribution

Pr (s̃t,f,i − st,f,i |st,f,i) as unimodal with the equivalent (unbiased)

variance σ2
t,f,i = β/(1 − β), we can approximate the condi-

tional probability pµ(j),f,i(x) under the application of the Bayes rule

with the Q-function Q(x) =
∫∞

x
(1/2π) exp(−u2/2) du for each

x ∈ M. With D
(2)
f,i given, G

(2)
MMSE-SIC-ER can be computed. With

the following detected symbols, the procedure is repeated until all

symbols have been detected. The LLRs can be computed after the

detection of each symbol analogously to (8).

While the number of summands in (14) rises with the QAM

modulation order, we can avoid this complexity by using the lower

bound (15) where it is assumed that sµ(t),f,i ∈ M ∩ Nŝµ(t),f,i
with

Nŝµ(t),f,i = Ns̄ = {s̄+ a, s̄− a, s̄+ a− aj, s̄− a+ aj,

s̄+ aj, s̄− aj, s̄+ a− aj, s̄− a− aj}.
Note that M ∩ Nŝµ(t),f,i contains (at most) eight QAM constella-

tion points which are closest to the hard detected symbol ŝµ(t),f,i
in the QAM alphabet (see Fig. 3), where a =

√

6/(|M| − 1) is

the spacing between the elements of M. The approximation (15)

is especially attractive for higher order modulation alphabets (e.g.,

|M| ∈ {256, 1024, . . .}, since the number of Q-function evaluations

required is independent from the modulation order. Then, for any

modulation order, only four probabilities have to be computed, viz.,

PR+ = Q
(
√
2σ−1

t,f,i(R(ŝµ(t) − s̃µ(t)) + a/2))
)

(16)

PR− = Q
(
√
2σ−1

t,f,i(a/2−R(ŝµ(t) + s̃µ(t)))
)

, (17)

PI+ = Q
(
√
2σ−1

t,f,i(I(ŝµ(t) − s̃µ(t)) + a/2))
)

, (18)

PI− = Q
(
√
2σ−1

t,f,i(a/2− I(ŝµ(t) + s̃µ(t)))
)

. (19)

1982
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Fig. 4: Bit error rates for a given SNR with 16-QAM modulation for a MIMO system with 3 × 3 (left) and 6 × 6 (center) antennas at 5Hz

Doppler fading, and a 4× 4 system with QPSK modulation at 200Hz Doppler fading (right).

Since the estimation error sµ(t),f,i− s̃µ(t),f,i is assumed to be circu-

larly symmetric complex Gaussian, the probability pµ(t),f,i(x) =

Pr
(

sµ(t),f,i = x|s̃µ(t),f,i
)

can be approximated based on PR+,

PR−, PI+, and PI− as given in Table 1 by a set of intersecting

half-planes in the plane of complex numbers. The edges of the re-

spective half planes define the decision borders for the hard detection

of ŝt,f,i that are shown in Fig. 3. Each half-plane defines a probabil-
ity event for a detection error resulting from a deviation s̃t,f,i−st,f,i
along the real and/or the imaginary axis. Note that only the (at most)

eight neighbors of sµ(t),f,i are taken into account in (15). For high

SNR, however, this approximation has negligible effect on the per-

formance, as a detection error with |ŝt,f,i−st,f,i| >
√
2a is unlikely.

Since the error covariance matrix is updated during the SIC, the

filter (13) must be adapted to the remaining interference before each

of the NT symbol detections. In order to reduce the complexity

of the matrix inversion involved in (13), we can use the Sherman-

Morrison formula to update the linear filter G
(t)
MMSE-SIC-ER,f,i. By

definingQ
(t)
f,i = (HHN−1

f,i H + (S
(t)
f,i +D

(t)
f,i)

−1)−1, we use

Q
(t+1) = Q

(t) −
Q(t)eµ(t)e

T
µ(t)Q

(t),H

1

(σ2
µ(t)

−[D(t)]µ(t))
− [Q(t)]µ(t)

. (20)

successively after every symbol detection, where the complexity of

the rank-1 update step is O(N2
T ). The MMSE optimal detection

and cancellation order [9, 21] is then successively identified by the

largest diagonal element of Q(t), i.e.,

µ(t) = argmin
t∈{1,...,NT}\{µ(1),...,µ(t−1)}

[Q(t)]t (21)

for t ∈ {1, . . . , NT}. The computation of the LLRs is then per-

formed according to (8). Similar to the linear MMSE filter and the

MMSE-SIC without regularization, the resulting MMSE-SIC-ER

soft detection algorithm has a computational complexity of O(N3
T ).

4. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm, we have sim-

ulated the MIMO system with i.i.d. Rayleigh fading channels at dif-

ferent Doppler frequencies. We have used the LTE turbo code [23] to

generate the transmit vectors ci with a coding block length of 6144

bits. We have assumed NF = 72 OFDM sub-carriers with 15 kHz
spacing in the same transmission band, a 1/12 time slot of cyclic

prefix as guard interval, and channel estimations every NP = 7 time

slots. For the time domain tap channel we have used the ITU Ex-

tended Terrestrial Urban (ETU) channel with 9 taps and a maximum

delay spread of 5µs [24]. At the receiver side, we have used the

standard iterative BCJR decoder [25] to decode the LLRs given by

the MIMO detectors. For the sake of comparison, we have fixed the

number of decoding iterations to 6. For our proposed method, we

have approximated the error covariance matrix using the half-planes

method as described in Subsection 3.3. The simulation results are

shown in Fig. 4 for NT = NR ∈ {3, 6} with 16-QAM for a slowly

time-varying channel and for NT = NR = 4 with QPSK in a fast

fading environment. The table lookup method from [14] is denoted

as MMSE-SIC-TL in the plots.

The improvement of the bit error rate through error regulariza-

tion is already visible for as few as NT = 3 transmitted symbols.

In the 3 × 3 system, the standard MMSE filter performs with a loss

of −2.0 dB at a bit error rate of 10−4 in comparison to the MLA-

MAP detector. The MMSE-SIC-TL regularizes the error partially

and provides a 1.0 dB gain to the linear MMSE filter. Our proposed

method is as close as 0.4 dB to the MLA-MAP detector and outper-

forms the MMSE by 1.4 dB and the MMSE-SIC-TL by 0.4 dB. As
expected, the relative performance gap of the algorithms decreases

slightly when the number of antennas is increased toNT = NR = 6.
Since the number of symbol cancellations increases with the num-

ber of antennas, the regularization of early detection errors becomes

more prevalent. As a result, we see that the bit error rate of our pro-

posed detector comes closer to the MLA-MAP bit error rate, while

the relative performance of the MMSE-SIC-TL method decreases.

While SIC approaches are known to be perform poor for im-

perfect CSI at the receiver, we can see in the 4 × 4 MIMO sys-

tem at 200Hz Doppler frequency that our proposed method is robust

to channel estimation errors. For the low SNR regime, the MMSE

filter achieves nearly the same performance as the MLA-MAP and

the proposed error regularization method, while the MMSE-SIC-TL

method performs slightly worse. For higher SNR, we observe that

the performance of the MMSE detection degrades, while the error

regularization methods show a constant performance gap to MLA-

MAP detection. Also in this case, our proposed detector outperforms

the MMSE-SIC-TL by 0.4 dB in terms of SNR.

5. CONCLUSION

We have shown in this paper, that the MMSE-SIC principle can be

applied for the detection of coded signals in iterative receivers by

preventing the propagation of the detection errors by a regulariza-

tion with a significant performance gain compared to linear MMSE

filtering. The resulting algorithm has a fixed runtime, is robust to im-

perfect CSI at the receiver and is especially applicable to high-order

turbo-coded QAM systems with three or more antennas.
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