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ABSTRACT

We propose a message-passing algorithm of joint channel estimation

and decoding for OFDM systems, where expectation propagation is

exploited to deal with channel estimation. Specially, the message

updating is formulated into a recursive form. As a result, for system

with K subcarriers and L channel taps, only O(K + L) messages

need to be tracked, and meanwhile they can be efficiently calculated

using FFT with complexity O(K|A| + K log2K), where |A| de-

notes the constellation size. Numerical experiments show that our

algorithm achieves BER performance within 0.5 dB of the known-

channel bound.

Index Terms— Expectation propagation, joint channel estima-

tion and decoding, message passing, OFDM

1. INTRODUCTION

Factor graph is convenient to define the structure of receiver per-

forming joint channel estimation and decoding [1]. However, ex-

act sum-product algorithm (SPA) [2] for joint channel estimation

and decoding is computationally infeasible, as the representation

of continuous channel states increases exponentially. To overcome

this problem, different approximate approaches have been proposed

in [3–11]. Monte Carlo methods were used to represent the distribu-

tion of channel states, but at high cost [3, 4]. Various approximate

message-passing algorithms have been proposed in [5–10]. Recent-

ly, Riegler et al have derived a generic message-passing algorithm

that merges belief propagation (BP) and the mean-field (MF) ap-

proximation (BP-MF) [11], and applied it to channel estimation in

OFDM systems [12]. Although its performance is excellent, the BP-

MF has a high complexity as large matrices need to be inverted. We

also note that a low-complexity version of the BP-MF algorithm has

been proposed in [13]; however, its performance is degraded in the

meantime.
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tional Basic Research Program of China (Grant No. 2013CB329001), the Co-
innovation Laboratory of Aerospace Broadband Network Technology, and
also by the Australian Research Council’s Discovery Projects DP1093000,
DECRA Grant DE120101266.

In this paper, we utilize the principle of expectation propaga-

tion [14] to make the messages of channel state tractable. To further

reduce complexity, the message updating for the channel estimation

is reformulated as recursions. It leads to a reduced number of mes-

sages need to be tracked from O(KL) to O(K + L) and efficien-

t message updating using fast Fourier transform (FFT), where K
denotes the number of subcarriers and L denotes the channel tap-

s length. The resulting algorithm has a computational complexity

of only O(K|A| +K log2K), where |A| denotes the constellation

size.

Throughout the paper, we use the following notations. The su-

perscript T and ∗ denote the transpose operation and the conju-

gate operation, respectively. Also, ln(·) denotes the natural logarith-

m; NC(x;m, v) , (πv)−1 exp(−|x − m|2/v) denotes a complex

Gaussian function; and h \ hl denotes all the components in h with

hl excluded. Furthermore, Ep(x)[·] denotes the statistical expecta-

tion operation with respect to the distribution p(x).

2. SYSTEM MODEL

Consider an OFDM system with K subcarriers, each modulated

by a symbol chosen from a 2Q-ary constellation set A. At the

transmitter, a bit vector b is encoded by a rate-R code, interleaved

by a random interleaver, and multiplexed with some training bits

c(p), resulting in a vector c = [c[1], . . . , c[N ]]T, where c[i] =

[c1[i], . . . , cK [i]]T, 1 ≤ i ≤ N , ck[i] = [c1k[i], . . . , c
Q
k [i]]

T, 1 ≤
k ≤ K, cqk ∈ {0, 1}, 1 ≤ q ≤ Q and N denotes the number of

OFDM symbols, and then K symbols, x[i] = [x1[i], . . . , xK [i]]T ,

are generated by mapping each sub-vector ck[i] onto a symbol

xk[i] ∈ A. Before sent through a channel h[i] = [h1[i], . . . , hL[i]]
T,

the symbol vector x[i] is OFDM modulated and a cyclic pre-

fix is added. At the receiver, the frequency-domain observations

y[i] = [y1[i], . . . , yK [i]]T with respect to the ith OFDM symbol are

written as

yk[i] = xk[i]
L
∑

l=1

Φk,lhl[i] + nk[i], k = 1, . . . ,K, (1)

where Φk,l = exp(−j2πkl/K) denotes the (k, l)th entry in the

discrete Fourier transform matrix Φ ∈ C
K×K , and nk[i] denotes the
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i.i.d Gaussian noise with zero mean and variance σ2
n. For notational

simplicity, the OFDM symbol index i is henceforth omitted.

3. FACTOR GRAPH REPRESENTATION

Based on the frequency-domain observations y and the a priori log

likelihood ratios (LLRs) {λa(cqk) , ln[p(cqk = 1)/p(cqk = 0)]} fed

back from the decoder or specified by the training bits, our task is

to generate the LLRs {λe(cqk) = ln [p(cqk = 1|y)/p(cqk = 0|y)] −
λa(cqk)}, where the a posteriori marginal probability p(cqk|y) is ob-

tained by

p (cqk|y) ∝
∑

x,c\c
q
k

ˆ

h

p (c,x,y,h) . (2)

However, the exact evaluation of p(cqk|y) is computationally pro-

hibitive for the problem sizes of interest, thus we will evaluate it

approximately by message-passing algorithm. For the presentation

of factor graph and the message-passing algorithm, we will use the

same convention as in [15], to which we refer the reader for an in-

depth review.

As c → x → y ← h is a Markov chain, the joint probability

p(c,x,y,h) can be factorized into

p (c,x,y,h) = p(c)p(x|c)p(y|h,x)p(h). (3)

Using the independence of the symbols associated with different

subcarriers, p(x|c) in (3) can be further factorized into p(x|c) =
∏

k
p(xk|ck), where p(xk|ck) = δ(ψ(ck) − xk) denotes the de-

terministic mapping xk = ψ(ck) and δ(·) is the Kronecker delta

function. Channel taps h are assumed to be independent Gaussian

random variables, thus the a priori probability p(h) can be factor-

ized into p(h) =
∏

l
NC(hl;m

a
hl
, vahl

), where ma
hl

and vahl
denote

the a priori mean and variance of the lth channel tap hl, respective-

ly. Finally, the channel transition function p(y|h,x) can be factor-

ized into p(y|h,x) =
∏

k fk(yk|h, xk), where fk(yk|h, xk) =
NC(yk; xk

∑

l
Φk,lhl, σ

2
n). The probabilistic structure character-

ized by (3) is illustrated by Fig. 1, where Ψk denotes the map-

ping constraint p(xk|ck), fk denotes the channel transition function

fk(yk|h, xk), and “=” denotes the cloning node.
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Fig. 1. Factor graph of an OFDM system with K subcarrier and L
channel taps.

As the factor graph in Fig. 1 is loopy, we consider a message

passing from the left to the right and then back again as one turbo

iteration. During a single turbo iteration, there may be several inner

iterations within the dashed block in Fig. 1 and the decoder. Spe-

cially, an inner iteration within the dashed block is also defined as

a message passing from the nodes {fk} to the cloning nodes and

back again. To achieve joint channel estimation and decoding, the

messages are passed over the global factor graph including the code

structure, namely, the inner messages of decoder calculated in the

last turbo iteration are available for the decoding in the next turbo

iteration.

4. MESSAGE PASSING BASED ON EXPECTATION

PROPAGATION

We will formulate the message passing in a single turbo iteration,

where the inner iteration in the dashed block are indexed by t. Ac-

cording to the SPA, the message passed rightward from the mapping

node Ψk is given by

µΨk→fk(xk) =
∏

q

p(cqk), (4)

where p(cqk) = exp(cqkλ
a(cqk))/[1 + exp(λa(cqk))]. Given the mes-

sage µΨk→fk(xk) and the messages {µt−1
hl→fk

(hl)}, a local belief

of hl is defined at the node fk:

βt
k(hl) =

1

ηtk

ˆ

h\hl

∑

xk∈A

fk(xk,h)µΨk→fk (xk)
∏

l′

µt−1
hl′→fk

(hl′),

(5)

where µt−1
hl′→fk

(hl′) = NC(m
t−1
hl′→fk

, vt−1
hl′→fk

) is shown later as

(18). From
´

hl
βt
k(hl) = 1, the normalization constant ηtk is given

by

ηtk =
∑

xk∈A

µΨk→fk(xk)NC

(

0; xkz
t
fk
(xk), |xk|

2τ tfk(xk)
)

, (6)

where

ztfk(xk) =
yk
xk

−
∑

l

Φk,lm
t−1
hl→fk

, (7)

τ tfk(xk) =
σ2
n

|xk|2
+
∑

l

vt−1
hl→fk

. (8)

By completing the square in the exponent of Gaussian functions,

βt
k(hl) is written as a mixture of Gaussian functions, i.e.,

βt
k(hl) =

∑

xk∈A

q(xk)NC(Φk,lhl;m
t
Φk,lhl

(xk), v
t
Φk,lhl

(xk)), (9)

where the mixture weight q (xk) and the component parameters are

given by

q(xk) =
1

ηtk
µΨk→fk(xk)NC

(

0; xkz
t
fk
(xk), |xk|

2τ tfk(xk)
)

, (10)

mt
Φk,lhl

(xk) = vt−1
hl→fk

ǫtk(xk) + Φk,lm
t−1
hl→fk

, (11)

vtΦk,lhl
(xk) =

(

1− vt−1
hl→fk

/τ tfk (xk)
)

vt−1
hl→fk

, (12)

where ǫtk(xk) , ztfk(xk)/τ
t
fk
(xk). To keep the messages in the

dashed block analytical, we project the local belief βt
k(hl) into a

Gaussian function β̂t
k(hl) , NC

(

hl; m̂
t
Φk,lhl

, v̂tΦk,lhl

)

. When the

criterion of minimum KL divergence, KL
(

βt
k(hl), β̂

t
k(hl)

)

, is em-

ployed, the projection reduces to matching the moments of β̂t
k(hl)

and βt
k(hl) [16], i.e.,

m̂t
Φk,lhl

= Eq(xk)

[

mt
Φk,lhl

(xk)
]

= Φk,lm
t−1
hl→fk

+ vt−1
hl→fk

Eq(xk)

[

ǫtk(xk)
]

(13)
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v̂tΦk,lhl
= Eq(xk)

[

vtΦk,lhl
(xk) + |m

t
Φk,lhl

(xk) |
2]− |m̂t

Φk,lhl
|2

= vt−1
hl→fk

(1− ζtkv
t−1
hl→fk

),
(14)

where ζtk , Eq(xk)

[

1/τ tfk (xk) − |ǫ
t
k(xk)|

2
]

+
∣

∣Eq(xk)[ǫ
t
k(xk)]

∣

∣

2
.

With the approximate belief β̂t
k(hl), the message µt

fk→hl
(hl) are

then updated by β̂t
k(hl)/µ

t−1
hl→fk

(hl):

µt
fk→hl

(hl) ∝ NC(φk,lhl; z
t
fk→hl

, τ tfk→hl
), (15)

where

τ tfk→hl
= 1/ζtk − v

t−1
hl→fk

, (16)

ztfk→hl
= Eq(xk)

[

ǫtk(xk)
]

/ζtk + Φk,lm
t−1
hl→fk

. (17)

As the approximate belief β̂t
k(hl) tries to cover all modes of the

Gaussian mixture βt
k(hl) [16], the variance of β̂t

k(hl), namely

v̂tΦk,lhl
, may become so large that τ tfk→hl

< 0. If τ tfk→hl
< 0

happens, we set ζtk = Eq(xk)

[

1/τ tfk (xk)
]

, which forces β̂t
k(hl)

to cover less modes and guarantees τ tfk→hl
> 0. This is just a

heuristic, but in our simulations it indeed avoids the instability of

expectation propagation in general.

At the cloning node of hl, the message µt
hl→fk

(hl) is updated

by

µt
hl→fk

(hl) = p(hl)
∏

k′ 6=k

µt
f
k′→hl

(hl)

= NC(hl;m
t
hl→fk

, vthl→fk
).

(18)

where

vthl→fk
=
(

1/vthl
− 1/τ tfk→hl

)−1
, (19)

mt
hl→fk

= mt
hl

+
vthl

(

mt
hl
− Φ∗

k,lz
t
fk→hl

)

τ tfk→hl
− vthl

, (20)

and vthl
and mt

hl
are defined by

vthl
,

(

1/vahl
+
∑

k

1/τ tfk→hl

)−1

, (21)

mt
hl

, vthl

(

ma
hl
/vahl

+
∑

k

Φ∗
k,lz

t
fk→hl

/τ tfk→hl

)

. (22)

After the inner iteration is terminated, the message µfk→Ψk
(xk) is

updated by

µfk→Ψk
(xk) =

ˆ

h

fk(xk,h)
∏

l

µtmax
hl→fk

(hl)

∝ NC

(

yk;xk

∑

l

Φk,lm
tmax

hl→fk
, σ2

n + |xk|
2
∑

l

vtmax

hl→fk

)

,
(23)

where tmax is the maximum number of inner iterations. Finally, the

LLRs of coded bits corresponding to the symbol xk are calculated

by

λe(cqk) = ln

∑

xk∈A1
q
µtmax
fk→Ψk

(xk)
∏

q′
p(cq

′

k )
∑

xk∈A0
q
µtmax

fk→Ψk
(xk)

∏

q′
p(cq

′

k )
− λa(cqk), (24)

for q = 1, . . . , Q. We summarize the message passing algorithm

using expectation propagation for the inner iteration in the Alg. 1,

which will be referred to as “EP”.

Algorithm 1 The EP algorithm for the tth inner iteration.

1: Initialization: If t = 1, set m0
hl→fk

= ma
hl
, v0hl→fk

=
vahl

, ∀k,∀l.

2: for k = 1→ K do ztfk(xk) =
yk
xk
−
∑

l
Φk,lm

t−1
hl→fk

,

3: τ tfk(xk) =
σ2

n

|xk|
2 +

∑

l v
t−1
hl→fk

, ǫtk(xk) =
ztfk

(xk)

τt
fk

(xk)
,

4: ζtk = Eq(xk)

[

1
τt
fk

(xk)
− |ǫtk(xk)|

2
]

+
∣

∣Eq(xk)[ǫ
t
k(xk)]

∣

∣

2
,

5: for l = 1→ L do τ tfk→hl
= 1/ζtk − v

t−1
hl→fk

,

6: ztfk→hl
= Eq(xk)

[

ǫtk(xk)
]

/ζtk + Φk,lm
t−1
hl→fk

.
7: end for

8: end for

9: for l = 1→ L do vthl
=
(

1/vahl
+
∑

k
1/τ tfk→hl

)−1

,

mt
hl

= vthl

(

ma
hl
/vahl

+
∑

k Φ
∗
k,lz

t
fk→hl

/τ tfk→hl

)

,

10: for k = 1→ K do vthl→fk
=
(

1/vthl
− 1/τ tfk→hl

)−1
,

mt
hl→fk

= mt
hl

+
vthl

(

mt
hl
− Φ∗

k,lz
t
fk→hl

)

τ tfk→hl
− vthl

.

11: end for

12: end for

4.1. LOW-COMPLEXITY IMPLEMENTATION

In the above EP algorithm, the number of messages need to be

calculated is O(KL) and the complexity of one inner iteration is

O(K|A| +KL). By formulating the message passing into a recur-

sive form, we can reduce the number of messages toO(K +L) and

efficiently calculate them using FFT.

The parameter vthl→fk
shown in (19) can be approximated by

vthl
shown in (21), then τ tfk (xk) becomes τ tfk (xk) = 1

|xk|
2 σ

2
n +

∑

l
vt−1
hl

. Define τ tfk , 1
ζt
k

, then τ tfk→hl
can be approximated by

τ tfk , and vthl
is finally written as vthl

=
(

1
va
hl

+
∑

k
1

τt
fk

)−1
. As a

result, mt
hl→fk

and mt
hl

become

mt
hl→fk

= mt
hl
− vthl

Φ∗
k,lz

t
fk→hl

/τ tfk , (25)

mt
hl

= vthl

(

ma
hl
/vahl

+ ξtl
)

, (26)

where ξtl is defined by ξtl ,
∑

k
1

τt
fk

Φ∗
k,lz

t
fk→hl

. Define γt
k ,

1
τt
fk

∑

l v
t
hl
ztfk→hl

and ztfk , 1
ζt
k

Eq(xk)[ǫ
t
fk
(xk)]. Using (25),

ztfk (xk) and ztfk→hl
can be rewritten as

ztfk (xk) =
yk
xk

+ γt−1
k −

∑

l

Φk,lm
t−1
hl

, (27)

ztfk→hl
= ztfk + Φk,lm

t−1
hl
− vt−1

hl
zt−1
fk→hl

/τ t−1
fk

. (28)

With ztfk→hl
shown in (28), ξtl and γt

k can be expressed recursively

as

ξtl ≈

(

∑

k

Φ∗
k,l

ztfk
τ tfk

)

+

(

∑

k′

mt−1
hl

τ tfk′

)

−
Kvt−1

hl
ξt−1
l

∑

k′′ τ tfk′′

, (29)

γt
k ≈

ztfk
∑

l v
t
hl

τ tfk
+

∑

l′
Φk,l′v

t
hl′
mt−1

hl′

τ tfk
−
γt−1
k

∑

l′′
vthl′′

Lτ tfk
. (30)

Finally, µfk→Ψk
(xk) are given by

NC

(

yk;xk(
∑

l

Φk,lm
tmax
hl

− γtmax
k ), σ2

n + |xk|
2
∑

l

vtmax
hl

)

.

(31)
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We summarize the simplified message-passing algorithm for the in-

ner iteration in Alg. 2, which will be referred to as “EP-LC”. Note

that ztfk (xk) , γ
t
k, k = 1, . . . ,K, and ξtl , l = 1, . . . , L, can be effi-

ciently calculated using FFT and inverse FFT, respectively.

Algorithm 2 The EP-LC algorithm for the tth inner iteration.

1: Initialization: If t = 1, set γ0
k = 0, ∀k, m0

hl
= ma

hl
, v0hl

=

vahl
, ξtl = 0,∀l.

2: for k = 1→ K do ztfk (xk) =
yk
xk

+ γt−1
k −

∑

l
Φk,lm

t−1
hl

,

3: τ tfk (xk) =
1

|xk|
2 σ

2
n +

∑

l v
t−1
hl

, ǫtk(xk) =
ztfk

(xk)

τt
fk

(xk)
,

4: ζtk = Eq(xk)

[

1
τt
fk

(xk)
− |ǫtk(xk)|

2
]

+
∣

∣Eq(xk)[ǫ
t
k(xk)]

∣

∣

2
,

5: ztfk = 1
ζt
k

Eq(xk)[ǫ
t
fk
(xk)], τ

t
fk

= 1
ζt
k

.

6: end for

7: for l = 1→ L do

8: ξtl ≈

(

∑

k
Φ∗

k,l

ztfk
τt
fk

)

+

(

∑

k′

m
t−1

hl

τt
f
k′

)

−
Kv

t−1

hl
ξ
t−1

l
∑

k′′ τt
f
k′′

,

9: mt
hl

= vthl

(

ma
hl
/vahl

+ ξtl
)

, vthl
=
(

1
va
hl

+
∑

k
1

τt
fk

)−1
.

10: end for

11: for k = 1→ K do

γt
k ≈

ztfk

∑
l v

t
hl

τt
fk

+

∑
l′ Φk,l′v

t
h
l′

m
t−1

h
l′

τt
fk

−
γ
t−1

k

∑
l′′ vt

h
l′′

Lτt
fk

.

12: end for

5. NUMERICAL RESULTS

5.1. SIMULATION SETUP

We examine the proposed algorithm using theK = 512 OFDM with

16QAM. The channel taps are assumed to change from one OFDM

symbol to another but be constant within an OFDM symbol. The

number of the channel taps is L = 32, and the channel power delay

profile is {vahl
= 1/L}. AR = 9216/16128 LDPC code with code-

word length 16128 bits and average column weight 3 is employed,

and 2304 training bits (all ’1’s) were uniformly multiplexed with the

code-word. As a result, the spectral efficiency is 2 bits per subcarrier

use. In a single turbo iteration, both the number of inner iteration in

the dashed block and the LDPC decoder is set to 1.

5.2. RESULTS
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Fig. 2 shows that both the proposed EP algorithm and EP-LC al-

gorithm perform close to the bound of known channel within 0.5

dB, and outperform the BP-MF algorithm proposed in [12]. Fig. 3

shows the normalized mean squared error (NMSE) of channel esti-

mates versusEb/N0. We also consider the case of known bits, which

serves as a lower bound for the channel estimation. It is shown that

our algorithms outperform BP-MF algorithm in the low-Eb/N0 re-

gion or when only a few turbo iterations are performed. Fig. 4 shows

the average number of turbo iterations need for successful decoding.

The number of turbo iteration performed by our algorithms is less

than that of the BP-MF algorithm, although the BP-MF algorithm

has a higher complexity per turbo iteration.

6. CONCLUSION

In this paper, we presented a message passing approach to joint chan-

nel estimation and decoding for OFDM systems. The complexity of

our algorithm isO(K|A|+K log2K) per turbo iteration, quite suit-

able for the system with many subcarriers and long channel memory.

Numerical experiments demonstrated that our algorithm achieved

BER performance within 0.5 dB of the known-channel bound and

outperformed the BP-MF algorithm proposed by Riegler et al in

terms of both BER performance and complexity.
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