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ABSTRACT

Despite their ability to reach within the channel capacity in

shorter codeblock lengths, non-binary LDPC codes have a

higher decoding complexity that poses non-trivial barriers

to their generalized adoption at algorithmic and compute-

intensive levels. In this work, we propose a programmable

FFT-SPA decoder that delivers high decoding throughput

at low power consumptions, while retaining a design flex-

ibility at the system level which surpasses typical VLSI

descriptions, guaranteeing quick retargeting and prototyping

of variants of this family of signal processing algorithms with

effective decoding throughputs of up to 1 Mbit/s and potential

throughputs of dozens of Mbit/s.

Index Terms— Non-binary LDPC codes, GF(q), Com-

munications, FPGA, OpenCL

1. INTRODUCTION

Among the different types of Error–Correcting Codes (ECCs)

that offer low Bit Error Rate (BER) at high noise levels we

find Turbo codes and Low–Density Parity–Check (LDPC)

codes. In fact, both offer capacity-approaching characteris-

tics, and in the particular case of LDPC codes, it has been

shown that they arbitrarily approach the Shannon limit [1, 2].

However, the adoption of LDPC codes has been accompa-

nied by the development of powerful decoding architectures

able to match the decoding rates and latency with nowadays’

requirements within a sensitive level of energy consump-

tion [3].

A fundamental reason why non-binary LDPC codes have

not been as widely standardized as their binary relatives is

due to the high numerical complexity involved in the soft-

decoding algorithms. Notable exceptions on the adoption

of non-binary LDPC codes are: i) Quantum–Key Distribu-

tion (QKD) encryption protocols [4]; ii) long-haul optical

communications [5]; and iii) RaptorQ codes for the era-

sure channel [6]. To ameliorate the numerical complexity,

several reduced complexity algorithms have been proposed,
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amongst them the Fast Fourier Transform Sum–Product Al-

gorithm (FFT–SPA) which is explored in this work for low

order binary extension fields (GF(2m)). Moreover, given

the particular nature of the end decoding platforms, domain-

specific knowledge of the hardware description language is

typically required for the Register Transfer Level (RTL) de-

scription of the Very Large Scale Integration (VLSI) decoding

system in addition to the design space exploration involved in

a non-binary LDPC decoder project. Addressing these two is-

sues at once is yet to be tackled by the scientific community,

with the due exception of Software–Defined Radio (SDR)

systems where multicore technology has been successfully

deployed [7, 8, 9].

This challenge may be addressed by the use of High–

Level Synthesis (HLS) tools that generate dedicated acceler-

ators for Field–Programmable Gate Arrays (FPGAs) while

maintaining the development effort at an affordable level.

This way, the focus can be given to the algorithmic details

of the accelerator rather than on low-level details of the un-

derlying processor platform. In particular, we explore the

OpenCL programming model and the HLS tool from Altera

to generate a wide-pipeline accelerator for LDPC decoders

over Galois Fields of dimension q (GF(q)).

We summarize the paper contributions as follows: i) a

programmable approach based on OpenCL and the HLS com-

piler tool from Altera that automatically generates RTL de-

scriptions from OpenCL kernels, allowing rapid test and pro-

totyping of algorithmic changes with high throughput; ii) ex-

ploiting architectural extensions to accommodate higher lev-

els of parallelism that mask memory accesses and bandwidth

limitations.

2. DECODING NON-BINARY LDPC CODES

Non-binary LDPC codes are defined by sparse parity-check

matrices (H) whose elements are defined over GF(q). The

matrix H is composed of M rows and N columns, corre-

sponding to the number of parity-check equations and the

codeblock length, respectively. H is also the adjacency matrix

of the Tanner graph LDPC code representation [10]. In graph

notation, columns in H correspond to Variable Nodes (VNs)
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and rows to Check Nodes (CNs) that are connected whenever

a non-null element exists in H. Furthermore, the set of edges

connected to VNv is denoted by C(v) and those connected to

CNc are denoted by V (c), with cardinality dv and dc.

The Sum–Product Algorithm (SPA), also designated as

Belief Propagation (BP), can be extended to GF(q) [11].

However, the numerical complexity involved in SPA decod-

ing has lead to the introduction of several sub-optimal vari-

ants [11] and also to Fourier representations [12, 7], which

lower the decoding complexity. In particular, the FFT–SPA,

used in this work, is defined as:

pv(x) = m(0)
vc (x) = p(vv = x|yv) (1)
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∏
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′∈Vc\v

FWHT{m
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′
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and consists of three processing phases: a) the channel de-

modulator feeds the VNs with their corresponding probabil-

ity mass function (pmf ) pv(x), i.e. the vector of probabilities

for each symbol in GF(q), and initializes all mvc(x)
(0) =

pv(x) (1); b) (CN processing) CNs process the mvc(x)
(i−1)

to compute mcv(x)
(i) (2), with (i) the i-th iteration; c) (VN

processing) VNs receive their adjacent mcv(x)
(i) and com-

pute mvc(x)
(i) (3), and also compute the a-posteriori relia-

bility of VNv, m
∗(i)
v (x) (4), from which the symbol of VNv

may be retrieved [12]. When the decoded word has converged

to a valid codeword or a maximum number of iterations has

been reached, the decoder iterates between the CN and the

VN processing. Due to the definition of parity-check coeffi-

cients over GF(q), a permutation of the pmf s is required, but

for contention was omitted from (1)-(4) [13].

3. FINE-GRAINED PARALLEL NON-BINARY LDPC

DECODERS ON FPGAS

Herein, the FFT–SPA mapping on the OpenCL model is de-

tailed. Despite its cross-platform characteristics, the OpenCL

programming model shows both limitations and advantages

for the particular case of the wide-pipeline accelerators gen-

erated by the Altera OpenCL tool that are also discussed next.

An overview of the OpenCL parallel programming model can

be found in [9].

3.1. Wide-Pipeline LDPC Decoder

The Altera OpenCL model generates wide-pipeline acceler-

ators from the fine-grainded parallel kernels defined by the

Algorithm 1 GF(2m) FFT–SPA wide-pipeline decoder on

FPGA. Routines are preceded with [H]ost and [F]PGA.

1: [H] Mem Copy: (Host to FPGA) Copy LUTs and Tanner

graph

2: – – – – – – – – – – (Start simulation) – – – – – – – – – –

3: [H] Generate codeword and transmit it through AWGN

4: [H] Mem copy: (Host to FPGA) Copy transmit codeword

5: – – – – – – – (Start FFT-SPA Decoding) – – – – – – –

6: while c ·H 6= 0 or maximum iterations reached do

7: [F] (cnProc) Execute CN kernel on the Fourier-domain

8: [F] (fwht) Execute the FWHT for mcv messages

9: [F] (vnProc) Depermute the mcv messages, execute

the VN kernel and permute mvc messages

10: [F] (fwht) Execute the FWHT for mvc messages

11: end while

12: – – – – – – – – (End FFT-SPA Decoding) – – – – – – – –

13: [H] Mem copy: (FPGA to Host) Copy decoded word

developer. These accelerators offer high throughput of the

work-item processing rate through two features: to a greater

extent through the highly-pipelined execution of the work-

items; and also through the parallel execution of work-items

by different Compute Units (CUs) or Single Instruction Mul-

tiple Data (SIMD) processing. The processing rate of the

work-items in the pipeline is the inverse of the Initiation In-

terval (II), where II is defined as:

1

II
= kSIMD×kCUs [work-items/clock cycles], (5)

where kSIMD ∈ {1, 2, 4, 8, 16} denotes the number of work-

items that are vector processed and kCUs ∈ N the number of

CUs that compose the accelerator, and II defines the elapsed

time, in clock cycles, between two consecutive work-items.

OpenCL also defines a streaming model where data is

streamed from one kernel to another as required by the al-

gorithm. Thus, we have defined three kernels for the OpenCL

FFT–SPA: the CN (2) and VN (3) processing and also for the

Fast Walsh–Hadamard Transform (FWHT) (2). Data is ini-

tialized from the host system and sent to the FPGA device

where the FFT–SPA decoding occurs, after which it is sent

back to the host system as formalized in Algorithm 1, and

also pictured in the upper box of Figure 1. In the lower box

of Figure 1, the wide-pipeline diagram of the FFT–SPA LDPC

decoder is presented showing: the input and output FIFOs for

the pv(x) and the m
∗(i)
v (x) messages; in the upper right cor-

ner the initiation of work-items in the pipeline with II= 1;

and in the bottom left the memory hierarchy of the decoder

coupled to the cnProc, vnProc and fwht processing units.

A key challenge of OpenCL LDPC decoding is the defini-

tion of a suitable variable-grain parallelism that fits both the

udnerlying architecture and the decoding algorithm. How-

ever, in the particular case of FPGA programming many

Single Instruction Multiple Thread (SIMT)-related restric-
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Fig. 1. Data is streamed from the host system to the FPGA,

where it is then streamed from each kernel to the next. In the

absence of streaming extensions, it is given to its correspond-

ing kernel in a data producer-consumer logic.

tions, that are transversal to Graphics Processing Unit (GPU)

programming [9], do not hold. Namely, the performance

achieved is no longer dependent on whether the workgroup

dimensions are multiple of the warp size [9]. Furthermore,

constant memory and local memory no longer possess hard

limits as imposed by a fixed memory hierarchy, but can be

adjusted as required by the algorithm expression in OpenCL,

limited only to the logic resources of the FPGA. As a con-

sequence, we are able to load all Lookup Tables (LUTs)

regarding the Tanner graph nodes’ connections in the con-

stant memory, regardless of their size.

3.2. Variable-Grain Parallelism

Work-item-per-node granularities in binary LDPC decoding

allow obtaining high decoding throughputs [9], while in the

non-binary case, the field dimension can be incorporated

as an extra level of algorithmic parallelism [7, 8]. Hence,

we define a work-item for each node field element and a

workgroup for each node. On the FPGA, this strategy is

flexible enough to accomodate as few as 4 work-items per

workgroup (GF(22)) or as high as 256 work-items (GF(28)).

Altough we are able to define the cnProc, vnProc, and the

fwht kernels’ execution grid to launch workgroups com-

posed of 2m work-items, the fwht OpenCL kernel can benefit

from optimizations carried out for the FFT acceleration on

FPGAs [14]. Consequently, we defined two distinct FWHT

for each GF(2m) order tested. A radix-2 factorization whose

work-item-granularity is tightly coupled to the LDPC decod-

ing context and another with radix-n tuned to the field’s order

for maximum throughput.

Furthemore, we employed single floating-point data rep-

resentation, both scalar and vectorial [7], of the soft-decoding

pmf messages exchanged. This overcomes the need to explic-

itly handle fixed-point multiplication, since the OpenCL stan-

dard does not offer native fixed-point arithmetic. Notwith-

standing, given the nature of the arithmetic operations of the

FFT–SPA and a high level of DSP units incorporated in mod-

ern FPGAs, floating-point operation is not forbiddingly ex-

pensive for a Stratix V FPGA.

3.3. Hardware Resource Optimizations

Extracting the maximum performance out of the available

computing resources of the FPGA given certain kernel defini-

tions, involves tuning wide-pipeline concepts for each kernel:

the number of CUs defined; whether compiler-driven SIMD

processing is defined or manual SIMD is included by using

vector data types; compiler-driven logic resource sharing that

reuses logic functions in the pipeline, at the cost of reducing

the throughput but in the prospect of freeing up resources that

can push the number of CUs and SIMD processing to higher

levels. We allowed the compiler to search for suitable combi-

nations of the latter parameters aiming for less than 85% logic

resource utilization.

4. EXPERIMENTAL RESULTS

The decoder was profiled for a (2, dc), N=768 symbols

LDPC code [7] on a Nallatech PCIe385N D5 FPGA board

using the Altera OpenCL Quartus 13sp1 release, for GF(2m),
with m={2, 3, 4}. The throughput was computed for the full

potential of the wide-pipeline accelerator, i.e. assuming that

between kernels there was no pipeline flushing and is denoted

by Tpot (6), and was also profiled in runtime using OpenCL

events denoted by T . Tw is another throughput metric that is

given by the OpenCL compiler expressed as the number of

processed work-items per second.

Tpotential =
N×m

Niter×fop
×

∑

j

Wj

∑

j

Wj/Tw(j)
[bit/s] (6)

In (6), Niter represents the number of decoding iterations ex-

ecution, Wi is the number of work-items executed by kernel

i, with WcnProc=WvnProc=Wfwht=2m×N×dv , and fop is the

frequency of operation. Also, the second product term is the

weighed harmonic mean of the kernels’ Tw.
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Table 1. Logic resource utilization: rows labelled with * decode 1 codeword and those with † decode 4 codewords at a time.
GF(2m) m=2 m=3 m=4

Logic (%) LEs+FFs RAMs DSPs P Tw(M) LEs+FFs RAMs DSPs P Tw(M) LEs+FFs RAMs DSPs P Tw(M)

cnProc* 10.38 9.09 2.14 (2,1) 483.05 19.26 18.07 4.15 (4,1) 965.52 10.37 9.33 2.14 (2,1) 483.05

FWHT* 13.76 13.26 1.26 (2,1) 500.00 18.39 18.67 1.32 (2,1) 500.00 23.45 24.03 1.38 (2,1) 464.00

vnProc* 31.89 20.66 4.03 (2,2) 966.00 16.13 10.32 2.01 (2,1) 483.00 16.12 10.32 2.01 (2,1) 483.00

Total* 85.23 62.26 7.42 – 587.61 82.86 66.34 7.48 – 587.53 80.33 62.96 5.53 – 476.51

Clock (MHz)* 163.07 188.96 193.16

T /Tpot(Mbit/s)* 1.08/9.79 0.82/7.34 0.68/3.97

cnProc† 13.77 7.51 12.71 (2,1) 348.00 13,72 13.11 6.67 (2,1) 348.00 10.37 9.33 2.14 (2,1) 483.05

FWHT† 18.65 11.97 0.25 (1,1) 170.45 13.10 9.68 1.38 (1,1) 154.67 27.51 20.26 0.19 (1,1) 108.95

vnProc† 18.84 12.86 4.65 (2,1) 348.00 18.83 12.86 4.65 (2,1) 348.00 16.12 10.33 2.01 (2,1) 483.00

Total† 76.00 56.80 11.57 – 311.90 73.36 54.92 12.70 – 245.65 77.13 57.70 12.96 – 225.24

Clock (MHz)† 206.52 216.07 203.5

T /Tpot(Mbit/s)† 3.36/27.72 1.73/12.28 0.98/7.51

T (Mbit/s) [7]† 17.44 17.51 11.97

T (Mbit/s) [15]* ∼60 (est.)

4.1. Wide-pipeline Acceleration

The logic resource utilization by each kernel and the decoder

system, as well as the obtained throughputs, are shown in

Table 1. In the top rows, correspoding to the single code-

word decoder, the clock frequency of operation grows with

the order of GF(2m). However, this trend is offset by low-

ering Tw, due to the lack of logic resources to keep a high

SIMD level, or a number of CUs greater than 1, which con-

tributes to a lower Tpot and an effectively lower T . Namely,

for m={2, 3, 4} we obtain, respectively, 1.08, 0.82 and 0.68
Mbit/s out of 9.79, 7.34 and 3.97 Mbit/s potentially achiev-

able. Increasing the parallelism level to 4 codewords decoded

at a time results in lower logic availability to keep SIMD and

CUs levels high. However, the effective throughput T , and

also the potential Tpot, increased due to the decrease of Tw

at lower rates than the increase of the number of codewords

decoded simultaneously. Hence, the decoding throughput

obtained for the multi-codeword decoder increases to 3.36,

1.73 and 0.98 Mbit/s, for m={2, 3, 4}, while having potential

throughputs of 27.72, 12.28 and 7.51 Mbit/s.

4.2. Discussion

Notwithstanding the increase in decoding throughput experi-

enced when moving from single- to multi-codeword systems,

the relative efficiency of the wide-pipeline accelerator—

the fraction of potential throughput actually delivered—is

of 11∼17% in the single-codeword case, and of ∼11% in

the multi-codeword case. In other words, while absolute

increases in decoding throughput can be accomplished by

increasing the data-parallelism levels through vector type op-

erations and data structures, the efficiency of the accelerator

is left unchanged. Nonetheless, the potential throughput, al-

beit non-trivial to realize, as it would likely involve LDPC

codes specifically designed for this type of wide-pipeline

accelerators and avoiding memory hazards could still add

non-negligble overheads, shows that the methodology pro-

posed is inline with both FPGA and proposed GPU solutions.

5. RELATED WORK

The state-of-the-art shows the need for low powered LDPC

decoding architectures [16, 17], based on FPGAs, developed

at a programming effort close to multicore approaches [7, 8,

15, 18]. In [16] and in [17] the authors focused on minimiza-

tion of the logic resources utilization by avoiding memory

hazards and reducing the footprint of the memory transactions

by using the EMS algorithm. In [18], a sequential decoder on

GPU that exploits the field’s dimension for extracting paral-

lelism within the Extended Min-Sum (EMS) was developed,

while in [8] a highly parallel expression of the Min-Max algo-

rithm, similar to the FFT–SPA decoders developed in [7, 15]

was explored. Considering that this work stands on the re-

configurable hardware field and in the flexible high-level pro-

gramming of signal processing algorithms, the design space

of LDPC decoders may be thoroughly explored with the pro-

posed methodology.

6. CONCLUSIONS

In this paper we propose a wide-pipeline FFT–SPA decoder

for non-binary LDPC codes on FPGA. Namely, an efficient

fine-grained algorithm expression has been developed, decod-

ing one or four codewords at a time, that is suitable to the

characteristics of a wide-pipeline accelerator. While the ef-

fective throughput is at par with the state-of-the-art decoders,

which lie in the Mbit/s range, the potential throughput of this

kind of architecture surpasses it and promises greater decod-

ing throughputs to be reached in the near future, while keep-

ing the development effort of this class of signal processing

algorithms low.
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