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ABSTRACT
Frame error rate (FER) prediction in wireless communication
systems is an important tool with applications to system level
simulations and link adaptation, among others. Although in
realistic communication scenarios it is expected to have code-
words of different lengths, previous work on FER prediction
marginally treated the dependency of the FER on the code-
word length. In this paper, we present a method to estimate
the FER using codewords of different length. We derive a
low complexity FER estimator for frames of different length
transmitted over a binary symmetric channel of unknown er-
ror probability. We extend this technique to coded systems
by the use of effective SNR FER predictors. The proposed
estimation scheme is shown to outperform other simpler esti-
mation methods.

Index Terms— FER prediction, PHY abstraction, effec-
tive SNR

1. INTRODUCTION

Frame error rate (FER) prediction is an important tool with
applications to different communication problems. FER pre-
diction is used for example to provide a PHY layer abstrac-
tion for system-level simulations [1–3]. It is also used in link
adaptation algorithms where a modulation and coding scheme
(MCS) is selected according to the state of the channel [4–7].

FER prediction is challenging in systems employing mul-
tiple input multiple output (MIMO) and orthogonal frequency
division multiplexing (OFDM) because of the space and fre-
quency selectivity. This selectivity causes the different bits
in a codeword to experience different signal to noise ratio
(SNR), so the mapping between channel state and FER is
more complicated. The problem is compounded by error con-
trol coding and interleaving. Different link quality metrics,
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link-to-system mappings, or effective SNR metrics [1, 2, 6, 7]
have been proposed to perform FER prediction in selective
channels. The effective SNR is a Kolmogorov mean [8] of
the different SNR values in the different carriers or spatial
streams, and usually require the calibration of some param-
eters according to empirical results [3]. More recently, ma-
chine learning methods have been also proposed to perform
FER prediction [4, 5, 9, 10].

A limitation of prior work [1, 7] is that the predictions
are tuned to frames of a fixed length. Extending these ap-
proaches to systems with variable frame length, for example
as experienced in wireless local area networks, requires im-
plementing and calibrating for every possible frame length.
Unfortuantely, this is challenging due to the large number of
potential frame sizes. Previous work using FER prediction
dealt with the variable codeword length in various ways. For
example, [11–14] assumed perfect knowledge of the coded
bit error rate (CBER), and from that value they calculated the
corresponding FER. Other previous work using FER predic-
tors assumed constant frame length [4–6, 9, 15], which is not
realistic under modern communication standards.

In this paper we present a method to perform FER estima-
tion for codewords of variable length. As opposed to [1, 7],
we assume the availability of a limited number of FER pre-
dictors, calibrated to estimate the FER of a small number of
codeword sizes. Unlike [11–14], we account for the FER pre-
diction error of the different codeword sizes. The proposed
FER estimator is derived under a binary symmetric channel
(BSC) assumption, where the FER estimation is imperfect as
a result of having a finite observation window. We extend the
result to coded systems under frequency and space selective
channels by the use of effective SNR FER predictors. The use
of the proposed estimation method enables accurate FER pre-
diction for a wide range of codeword lengths while keeping a
low computational complexity.

2. FER ESTIMATION FOR UNCODED SYSTEMS

Consider a transmitter-receiver pair communicating through
a noisy channel. The transmitter builds blocks of bits
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[b1, . . . , bL] of variable length L, with bi ∈ {0, 1}, and the
receiver observes

[
b̂1, . . . b̂L

]
at the output of the channel,

with b̂i ∈ {0, 1}. The channel is memoryless and symmet-
ric with error probability p, i.e., p , P

[
b̂i = 1|bi = 0

]
=

P
[
b̂i = 0|bi = 1

]
. We assume that the transmitted block of

bits contains an error detection code such that the receiver
is able to identify the received blocks with at least one er-
roneous bit. We also assume that the error detection code is
designed to make the missed detection probability negligible.
If we denote by θL the probability of receiving an erroneous
block of length L, we have that

θL = 1− P

[
L⋂

i=1

(
bi = b̂i

)]
= 1− (1− p)L . (1)

It can be seen from (1) that if the FER for a frame length
L is known perfectly, we can easily obtain the FER for a dif-
ferent frame length L̃ as

θL̃ = 1− (1− θL)L̃/L . (2)

In a realistic scenario, however, it is very unlikely that an
exact estimate of the FER is available for any length. In gen-
eral, the available FER estimate is going to be the result of ob-
serving the success and failures of frames of a certain length
during a time period. Moreover, observations of frames of
different length may improve our FER estimate. In the fol-
lowing, we formalize the problem of estimating the FER from
observations of frames of different size.

Consider a communication system with ` different frame
sizes L1, . . . , L`. During an observation period, a receiver
observes ni transmissions of size Li, out of which mi are
received with errors. mi is binomially distributed with pa-
rameters ni and θLi , i.e.

p (mi; θLi) =

(
ni
mi

)
θmiLi (1− θLi)

ni−mi . (3)

The maximum likelihood estimate (MLE) of θLi given the
observation mi is the measured FER, i.e., θ̂Li = mi

ni
. The

MLE is unbiased with variance

σ2
i , E

[(
θLi − θ̂Li

)2]
=

(1− θLi) θLi
ni

. (4)

If there are observations from only one length (i.e., ` = 1),
we can relate the MLE of θL1

and θL̃ by using the invariance

property [16] and (2) as θ̂L̃ = 1−
(
1− θ̂L1

)L̃/L1

.

If ` > 1, however, the derivation of the MLE of θL̃
is more involved. For a vector of observed errors m ,
[m1, . . . , m`]

T , the probability mass function of m parametrized

by the FER θL̃ can be easily obtained just by assuming inde-
pendent observations and by applying (2) as

p (m; θL̃) =
∏̀

i=1

(
ni
mi

)(
1− (1− θL̃)

Li/L̃
)mi

(5)

× (1− θL̃)
(ni−mi)Li/L̃ .

It is possible to calculate the Fisher information matrix
from (5) and conclude that a minimum variance unbiased esti-
mator of θL̃ does not exist [16]. The MLE seems also difficult
to calculate, since the likelihood function is nonconcave in θL̃
and, therefore, maximizing it would require a grid search. We
propose a simple and computationally efficient approach con-
sisting on a linear combination of ` MLE of θL̃, each one
obtained from the observations from a different length. First,

let us denote as θ̂L̃ (Li) , 1−
(
1− θ̂Li

)L̃/Li
the MLE of θL̃

from the measurements of length Li. We propose to estimate
θL̃ by a linear combination of θ̂L̃ (L1) , . . . , θ̂L̃ (L`):

θ̂L̃ =
∑̀

i=1

βiθ̂L̃ (Li) (6)

with {βi} a set of weights to be designed. Some simple direct
values of βi will serve as our baseline for comparison:

• Average: βi = 1/` ∀i.

• Closest: βi =





1 if i = argmin
∣∣∣Li − L̃

∣∣∣
0 otherwise

.

Obtaining the optimum weights βi is quite involved as the
MLEs θ̂L̃ (Li) are biased in general (even when the MLEs
θ̂Li are not). Also, the variance of θ̂L̃ (Li) depends on the
parameter to estimate. In the following, we derive a value for
the βi by assuming a sufficiently large number of observations
ni.

If we have a sufficiently large number of observations ni,
the distribution of the MLE θ̂Li can be approximated as [16]
θ̂Li ∼ N

(
θLi , σ

2
i

)
, so we can write

θ̂L̃ (Li) = 1− (1− θLi + wi)
αi (7)

with αi = L̃/Li and wi ∼ N
(
0, σ2

i

)
. As we are using a

small variance approximation, we approximate θ̂L̃ (Li) by the
first order Taylor expansion series around wi = 0 as

θ̂L̃ (Li) ≈ θL̃ + wiαi (1− θL̃)
αi−1

αi . (8)

From (8) we can see that the MLE θ̂L̃ (Li) is unbiased for
large ni, as predicted by the asymptotic properties of any
MLE. The variance of the estimator θ̂L̃ (Li) is

ξ2i , E
[(
θ̂L̃ (Li)− θL̃

)2]
= σ2

i α
2
i (1− θL̃)

2
αi−1

αi (9)

=
α2
i

(
1− (1− θL̃)

1/αi
)
(1− θL̃)

2αi−1

αi

ni
.
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Fig. 1. Linear combination weights βi as a function of the er-
ror probability. We see that, in general, αi = 1 (same length)
is not a maximum. Low α values have more weight for low
FER values.

From the values ξ2i , the linear fusion weights which minimize
the variance of θ̂L̃ in (6) are

βi =
1/ξ2i∑`
i=1 1/ξ

2
i

. (10)

Note that the MSE ξi depends on θL̃, which is the pa-
rameter to be estimated. Thus, the parameters βi cannot be
obtained directly. It is expected, however, that the parameters
βi are not very sensitive to small changes in θL̃. We propose
a two-step estimation. First, obtain an initial estimate θ̂L̃,0 of
θL̃ by averaging the MLEs θ̂L̃ (Li) with weights βi = 1/`.
Second, use θ̂L̃,0 as the true value of θL̃ to calculate the ξi
and then obtain the optimum weights βi according to (10).

In Figure 1 we show the evolution of βi with αi for dif-
ferent θL̃, and a constant ni. It can be seen that the maxi-
mum weight is not given to the samples with similar Li (i.e.,
α ≈ 1), and depends on the operating regime. For example, in
low FER values (θL̃ = 0.01) more weight is given to samples
from longer packets (small α), since in those packets the er-
ror probability is going to be larger and, therefore, more error
events can be observed. The opposite behavior is observed
in the high FER region (θL̃ = 0.99), where shorter packets
provide better error estimates.

We evaluated the performance of the proposed estimation
approach in a BSC with error probability p. In this setting,
the FER is exactly θL = 1 − (1 − p)L, so we can compare
the obtained result with the exact FER value. We set ` = 5,
with L = [L1, . . . , L`] = [100, 1000, 5000, 8000, 10000]
and ni = N ∀i, with N = 10, 100, 1000. Our objective
is to estimate the FER with L̃ = 2000. We compare the
results with the two simpler estimation approaches already
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Fig. 2. NMSE of FER prediction with different estimation
methods as a function of p. Different colors are used for dif-
ferent codeword lengths: N = 10 (blue), N = 100 (red),
N = 1000 (black).

mentioned. The results are shown in Figure 2, where the fig-
ure of merit is the normalized mean squared error (NMSE),

defined as NMSE(dB) = 10 log10

(
1
K

∑K
i=1

(θ̂L̃,i−θL̃)
2

θ2
L̃,i

)

with θ̂L̃,i the FER estimate from the i-th realization of the
observations. We averaged the results over K = 104 real-
izations of the observations. We can see that the proposed
approach outperforms the more naive estimates for almost all
values of p and N . The gain is especially noticeable when the
number of observations is high (N = 100, 1000), and can be
as large as 10dB. From the figure, we can observe that the ef-
fect in NMSE reduction when applying the proposed method
is approximately the same as multiplying the number of ob-
servations by a factor of 10, especially for low p values.

We also compared the proposed method against a scenario
where all the observations are of the desired length. For ex-
ample, for N = 10, our method observes 10 frames of each
length in L = [100, 1000, 5000, 8000, 10000], and we com-
pare it against the case of observing 50 frames of length 2000.
In the latter case, the MLE of the FER is simply the observed
FER, and its variance is given by (4). We show the results in
Figure 3. The proposed method with observations of different
lengths outperforms the MLE with observations of frames of
the desired length, especially for low p and large N values.

3. FER ESTIMATION FOR CODED SYSTEMS

We exploit the insights obtained for the BSC to perform
FER prediction with different codeword length in coded
systems under frequency and space selective channels. Al-
though in general it is difficult to obtain a good approxi-
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Fig. 3. NMSE of FER prediction compared with observations
of the desired length, for different p and N values.

mation for the FER in coded systems, the relationship be-
tween the FER and CBER pcoded can be approximated as
θL = 1 − (1− pcoded)

L/D
, where D is a parameter that

depends on the code. For example, D is the minimum dis-
tance of the code in the case of convolutional codes, and the
number of coded bits in the case of LDPC codes [14]. The
relationship between FER of two different lengths is given by
(2), thus not depending on the actual value of D.

We perform FER prediction by the use of the exponen-
tial effective SNR metric (EESM). Prediction is performed
in two steps. First, the set of post-processing SNR values
γ1, . . . , γK , are mapped to a single SNR value as

γeff = −
1

β
log

(
1

K

K∑

i=1

e−βγk

)
(11)

where β is a calibration parameter to be fitted according
to empirical results. Second, the FER estimate for a cer-
tain length L is obtained as θ̂L = FERAWGN,L (γeff) with
FERAWGN,L an empirically obtained function mapping an
SNR value to the FER in AWGN for a codeword length L.
Note that both the calibration parameter β and the FER in
AWGN are going to depend on L. Also, if FER prediction
is performed for different modulation and coding schemes,
a different β and FER function has to be obtained for each
case.

We evaluated the proposed estimation procedure for
FER prediction under the IEEE 802.11ac standard [17].
We selected MCS QPSK 3/4 with two spatial streams, a
transmitter-receiver pair with 2 antennas each, and SVD pre-
coding. We obtained FER samples for codewords with length
L =

[
27, . . . , 214

]
, i.e., codeword lengths between 128 and

16384 bits. We trained 8 EESM estimators (one for each
length) with 500 FER samples for different SNR values and
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Fig. 4. NMSE of FER prediction for different frame sizes in
IEEE 802.11ac, QPSK 3/4.

Rayleigh channel model. The SNR values were selected be-
tween 0 and 30 dB, so FER values between 0 and 1 had to be
estimated. For each of the 8 length values, we estimated the
FER using the other 7 FER predictors (with the 3 proposed
linear fusion rules), and compared the result with the FER
prediction from the EESM estimator of codewords of the
same length. Formally, the proposed FER estimator is

θ̂L̃ =
∑̀

i=1,Li 6=L̃

βi (1− (1− FERAWGN,Li (γeff))
αi) . (12)

We obtained the designed weights βi by assuming a constant
ni in (9). We show the results in Figure 4. We can see that
the proposed estimator outperforms the other linear fusion ap-
proaches for all cases, except for the higher length case, where
it attains approximately the same NMSE as the Closest com-
bining. Also, for 6 of the 8 lengths, the proposed estimator
outperforms the EESM FER prediction trained with samples
of the same length. In some cases, like L̃ = 210, the NMSE
gain with respect to the same length FER predictor is in the
order of 4dB.

4. CONCLUSIONS

In this paper we presented an approach to perform FER esti-
mation in communication systems using codewords of differ-
ent length. We derived an estimator as a linear combination
of several MLE of the FER in a BSC. We use this estima-
tor in a coded system with FER prediction using EESM, and
we compare its performance against other FER prediction ap-
proaches. The proposed estimator with the designed linear
combination is shown to outperform other simpler estimation
methods. We also show that a MLE with samples of the de-
sired length can perform worse that the proposed estimator.
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