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ABSTRACT

Recently, context-dependent Deep Neural Network (CD-
DNN) has been found to significantly outperform Gaussian
Mixture Model (GMM) for various large vocabulary contin-
uous speech recognition tasks. Unlike the GMM approach,
there is no meaningful interpretation of the DNN parame-
ters, which makes it difficult to devise effective adaptation
methods for DNNs. Furthermore, DNN parameter estimation
is based on discriminative criteria, which is more sensitive
to label errors and therefore less reliable for unsupervised
adaptation. Many effective adaptation techniques that have
been developed and proven to work well for GMM/HMM
systems cannot be easily applied to DNNs. Therefore, this
paper proposes a novel method of combining DNN and GMM
using the Temporally Varying Weight Regression framework
to take advantage of the superior performance of the DNNs
and the robust adaptability of the GMMs. This paper ad-
dresses the issue of incorporating the high-dimensional CD-
DNN posteriors into this framework without dramatically
increasing the system complexity. Experimental results on a
broadcast news large vocabulary transcription task show that
the proposed GMM+DNN/HMM system achieved signifi-
cant performance gain over the baseline DNN/HMM system.
With additional unsupervised speaker adaptation, the best
GMM+DNN/HMM system obtained about 20% relative im-
provements over the DNN/HMM baseline.

Index Terms— Gaussian mixture model, Deep Neural
Network, Speaker Adaptation

1. INTRODUCTION

Context-dependent Deep Neural Network (CD-DNN) [1] has
been reported to outperform various conventional Gaussian
Mixture Models (GMM) [2] based Hidden Markov Model
(HMM) [3] systems by a large margin for many large vocab-
ulary continuous speech recognition (LVCSR) tasks [4, 5].
DNN uses a long span of acoustic features as input so that
both rich inter-frame and intra-frame information can be mod-
elled for better discrimination. The multiple layers of nonlin-
ear transformation allows the complex relationship between
the acoustic features and the context-dependent HMM states

to be effectively learned. However, unlike the GMM approach
where each triphone state is represented by a GMM, a single
DNN is used to simultaneously predict the posterior proba-
bilities of all the states. It is difficult to interpret the DNN
parameters in a meaningful manner. There is no clear and ef-
fective way of adapting the DNN parameters. Moreover, the
DNN parameters are typically estimated discriminatively us-
ing the cross-entropy criterion which is more sensitive to label
errors. By contrast, many advanced adaptation techniques,
such as Maximum Likelihood Linear Regression (MLLR) [6]
and Maximum A Posteriori (MAP) [2], have been developed
and shown to work well for the GMM/HMM systems. In
particular, these methods are based on the generative training
paradigm, which is more robust for unsupervised adaptation.

Various indirect approaches have been proposed to take
advantage of both the GMMs and DNNs. Some researchers
suggested using the DNN to extract better discriminative fea-
tures, such as the tandem features [7, 8, 9, 10]. In order to
develop feasible tandem features for GMM training, the high
dimensional CD-DNN posteriors have to be projected to a
lower dimension, which inevitably causes information loss.
Performance degradation of the tandem systems using ML
training has been observed in multiple reports [8, 10]. Fur-
ther, discriminative training and unsupervised speaker adap-
tation have been successfully applied to the tandem systems,
which achieved superior performance compared to the hybrid
DNN/HMM system [8]. Others have also proposed to use the
adapted acoustic features based on the fMLLR transformation
obtained from the GMM system [11] or another adaptation
NN using speaker code information [12].

In this paper, GMM+DNN/HMM is proposed as a novel
system that combines the GMM and DNN using the Tem-
porally Varying Weight Regression (TVWR) framework [13,
14]. Based on this framework, a regression model is trained
to transform the DNN posteriors into the time-varying scaling
factors for the Gaussian weights. However, directly incorpo-
rating the high-dimensional CD-DNN posterior features will
lead to a substantial increase in the number of regression pa-
rameters. This paper will present some solutions to address
this issue.

The rest of this paper is organized as follows. Section
2 reviews the prior works about GMM and DNN. Section
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3 introduces the proposed GMM+DNN/HMM system. Sec-
tion 4 presents solutions to address the issue of incorporating
the high-dimensional CD-DNN posteriors efficiently without
dramatically increasing the model complexity. Finally, the
experimental results are reported in Section 5.

2. PRIOR WORKS

For decades, GMM has been used as the representation of
the HMM state distribution due to its efficient training and
decoding algorithms [2]. In the conventional GMM/HMM
system, the state emission probability is given as:

p(ot|j) =

M∑
m=1

cjmp(ot|j,m) (1)

where j is the HMM state, ot is the observation at time t,M is
the number of Gaussian components per state, cjm is the static
component weight and p(ot|j,m) is a Gaussian distribution.
Due to the observation independence assumption and the use
of diagonal covariance matrices for the Gaussian components
(for better efficiency), the inter-frame and intra-frame correla-
tions are poorly modelled by the GMM/HMM systems, which
limits the performance to some extent. Nevertheless, effective
adaptation techniques, such as the MLLR [6], have been de-
veloped to achieve reliable unsupervised speaker adaptation.

On the other hand, DNN is a general purpose machine
learning model that is capable of learning the complex non-
linear function to map a long span of acoustic features into
high quality CD state posterior probabilities. The state prob-
ability of a DNN/HMM hybrid system is given as:

p(ξt|j) ∝
p(j|ξt)
P (j)

, ξt = {ot−δ . . .ot . . .ot+δ} (2)

where P (j) and p(j|ξt) are the prior and posterior probabil-
ity of state j respectively and ξt is the long span acoustic fea-
tures. Unfortunately, the MLLR adaptation method cannot be
easily applied to adapt the DNNs. There are currently several
workarounds reported in the literatures including ‘borrowing’
MLLR transforms estimated using the GMM/HMM systems
to adapt the acoustic features [11], introducing speaker code
to adapt the parameters in the first few layers of a DNN [12]
and using the DNN posterior features to train the tandem sys-
tems [7, 8, 9, 10] which can then be adapted using standard
techniques like MLLR.

3. COMBINING GMM AND DNN

As previously mentioned, the DNNs are able to predict high
quality discriminative CD posteriors while the GMMs can
be reliably adapted in an unsupervised manner using MLLR.
Therefore, to get the best of both worlds, this paper proposes

Adaptation
MLLR

DNN

Gj1 Gj2 Gj.
GjM

cjM

Regression

cj1 cj2 cj.

... ...

Gj.: Gaussian mixture

cj.: Static weight

Fig. 1. An schematic diagram showing the state output prob-
ability function of the proposed GMM+DNN/HMM system.

combining the GMMs and DNNs using the TVWR frame-
work [13, 14]. According to this framework, the state output
probability of the long span acoustic features is given as:

p(ξt|j) ∝
M∑
m=1

cjm

N∑
i=1

P (i|τ t)P (i|j,m)p(ot|j,m) (3)

where τ t = {ot−δ . . .ot−1,ot+1 . . .ot+δ} denotes the con-
texts of the current observation, i is the latent variable to
partition the acoustic space, P (i|τ t) is the posterior feature,
P (i|j,m) is the regression parameter. M and N correspond
to the number of Gaussian components and the number of
latent variables, respectively. As shown in Figure.1, the
long span acoustic feature is decomposed into two parts.
Firstly, the regular-sized observation ot is modelled by the
conventional Gaussian components, where MLLR adapta-
tion can be easily applied. Secondly, the latent variable i is
associated with the clustered CD states so that P (i|τ t) can
be predicted using a DNN. However, directly incorporating
the high-dimensional CD-DNN posteriors (in the order of
thousands) leads to a large number of regression parameters,
P (i|j,m). This will result in expensive computation and
may cause over-fitting. In the next section, two solutions will
be presented to address this issue without compromising the
model efficiency.

4. REGRESSION OF CD-DNN POSTERIORS

In order to maintain a reasonable number of regression pa-
rameters, the high-dimensional CD posterior features have to
be projected down to a lower dimension. In the following,
two solutions will be presented to achieve this. The first so-
lution attempts to reduce the number of regression weights
via parameter tying. The latent variables, i, are clustered into
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groups so that Eq. 3 can be rewritten as:

p(ξt|j) ∝
M∑
m=1

cjm

G∑
g=1

P (g|τ t)P (g|j,m)p(ot|j,m) (4)

where P (g|j,m) is the regression weight for group g and the
posterior probability of g is given by:

P (g|τ t) =
∑
i∈g

P (i|τ t) (5)

Therefore, tying the regression weights into groups is equiv-
alent to projecting the posterior probabilities according to
Eq. 5. In this work, the groupings are chosen to correspond to
the monophone states and the resulting group posteriors are
simply the CI posteriors. However, such projection operation
may lose valuable context information such that we no longer
preserve the superior performance of the CD-DNN model.
In order to incorporate richer context information without
dramatically increasing the model complexity, multi-stream
TVWR [15] is used to integrate multiple sets of posterior
features. The resulting state probability is given as:

p(ξt|j) ∝
M∑
m=1

cjm

C∏
c=1

Nc∑
gc=1

P (gc|τ t)P (gc|j,m)p(ot|j,m)

where the CD posteriors are now factorized into C groupings
andNc is the number of groups in the cth stream. In this work,
we used three streams, one for the centre monophone states
(g2) and the other two for the left (g1) and right (g3) contexts.
Although multiple DNNs can be trained for each stream, tem-
poral context expansion can be applied to obtain the left and
right context stream. Therefore, the posterior probabilities of
the left/right contexts are derived from the centre-phone state:

P (g1|τ t) = P (g2|τ t−∆l
) and P (g1|τ t) = P (g2|τ t+∆r

)

where ∆l and ∆r are the smallest positive values such that
the states corresponding to the largest P (g2|τ t−∆l

) and
P (g2|τ t+∆r

) are different from state with largest P (g2|τ t).
The second CD posterior projection method adopts a

sparse regression model where only a smaller set of CD
posteriors is used for each Gaussian component. Con-
sidering that the TVWR formulation has the constraint∑N
i=1 P (i|j,m) = 1, many of the regression parameters

could be very small, especially when N is large. Hence, there
may be only a small fraction of the parameters that actually
contribute to the regression. The objective is to perform the
sparse regression using only the most important parameters:

p(ξt|j) ∝
M∑
m=1

cjm
∑
i∈Ij

P (i|τ t)P (i|j,m)p(ot|j,m) (6)

where Ij denotes the set of active latent variables for state j.
Intuitively, Ij can be chosen such that:

Ij = {i : P (i|j) > ν} (7)

where P (i|j) is computed as

P (i|j) =
1

|Tj |
∑
t∈Tj

P (i|τ t) (8)

Tj is the set of frames where j is the reference state and |.|
denotes the cardinality. ν is a threshold that can be adjusted
to control the number of active posteriors. The regression
parameters are initialised as P (i|j,m) = P (i|j) if i ∈ Ij and
zero otherwise. In this work, we chose ν = 1/N .

5. EXPERIMENTAL RESULTS

The experiments were conducted on the Topic Detection and
Tracking - Phase 3 (TDT3) corpus for English broadcast news
transcription task. After preprocessing of the data, which
includes removing non-speech segments, text normalization
and audio segmentation, approximately 100 hours of speech
data are retained for acoustic model training. The evaluation
task is a 58k open vocabulary broadcast news transcription
task taken from the F0 portion of the 1997 Hub-4E Bench-
mark Test, which consists of about 3 hours of speech data
and 49 speakers. The decoding language model is obtained
by interpolating two language models trained on the TDT3
transcriptions and the Gigaword English corpus respectively.

The acoustic features are the 39 dimensional PLP coef-
ficients (12 static coefficients, an energy term and the first
two derivatives) with utterance-based cepstral mean normal-
ization. The GMM/HMM baseline system is a decision tree
state clustered triphone system with 4451 tied states. Each
triphone is modelled by a 3-state left-to-right HMM and each
state is modelled by a 20-component GMM. All the GMM
parameters are trained using the maximum likelihood (ML)
criterion. For DNN training, 10 hours of the training data
are held out as the cross validation set and the rest are used
for training. The input to the DNN is a 15-frame PLP fea-
tures. The DNN has 5 hidden layers and each hidden layer
has 2048 units. The output layer of the DNN corresponds to
the 3052 tied states of a GMM/HMM system. The recogni-
tion is performed with a bigram full decoding followed by a
trigram lattice rescoring. To build the tandem system, princi-
ple component analysis (PCA) is used to project the log pos-
terior probabilities of the CI states into 13-dimensional fea-
tures, which are then appended to the 39-dimensional PLP
features. Then, the 52-dimensional tandem system is esti-
mated re-estimation with four Baum-Welch iterations using
the ML criterion. Unsupervised speaker adaptation is per-
formed during testing, where one global constrained MLLR
transformation is estimated for each speaker using the tran-
scriptions recognised by the unadapted system. The same set
of transforms are also used to adapt the acoustic features for
the DNN. Note that these transformations were obtained by
using only one iteration of Baum-Welch estimation.

Table 1 shows the performance of various baseline sys-
tems with or without unsupervised speaker adaptation. With-
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System Adaptation
None MLLR

GMM/HMM 23.4 18.7
Tandem 19.3 16.9

CD-DNN/HMM 14.5 18.8

Table 1. Word Error Rate (WER%) of various baseline sys-
tems with or without unsupervised speaker adaptation.

out adaptation, the CD-DNN/HMM system obtained 8.9%
absolute WER reduction over the ML trained GMM/HMM
system. Similarly, the tandem system achieved 4.1% abso-
lute improvement over the baseline GMM/HMM system due
to the additional tandem features derived from the CI pos-
teriors. However, the tandem system does not perform as
well as the CD-DNN/HMM system. This is somewhat ex-
pected due to the following reasons: 1) the tandem features
are obtained from only the CI posteriors; 2) the information
loss due to PCA projection; and 3) the ML parameter esti-
mation of the tandem system. After performing unsupervised
speaker adaptation, significant absolute WER reductions of
4.7% and 2.4% were obtained for the GMM/HMM and the
tandem systems respectively. However, simply ‘borrowing’
the constrained MLLR transforms to perform adaptation dur-
ing decoding is not reliable and a substantial performance
degradation of 4.3% absolute is observed. This is probably
because we do not consider speaker adaptive training in this
work and the MLLR adaptation is only applied to the test data.

Table 2 shows the performance of the GMM+DNN/HMM
systems with different configurations. When using only
the CI posteriors without context expansion, the unadapted
system gives 16.2% WER, which is 1.7% behind the CD-
DNN/HMM system due to the lack of context information.
With context expansion, the performance improved to 13.3%,
which is 1.2% better than the baseline. On the other hand,
applying sparse regression with the CD posteriors achieves
14.6% WER without context expansion and 13.1% WER
with context expansion. This results indicate the potential
of performing sparse regression by selecting state-dependent
active posteriors to reduce the model complexity. Further-
more, performing unsupervised speaker adaptation yields
consistent performance improvements of 0.8% – 3.0% for
all the GMM+DNN/HMM systems. This shows that the
GMM+DNN/HMM systems are able to exploit the adaptabil-
ity of the GMMs to obtain further improvements. The best
performance of 11.6% WER is obtained using the CI pos-
teriors with context expansion, which translates to approxi-
mately 20% relative improvement compared to the baseline
DNN/HMM system. Although using the CD posteriors with
context expansion gives slightly better results than using CI
posteriors with context expansion for the updated systems,
the former did not achieve as large a performance improve-
ment, probably because the richer information from the DNN

Posteriors Context Regression Adaptation
Expansion Parameters None MLLR

CI No 120 16.2 13.2
Yes 360 13.3 11.6

CD No 137 14.6 12.5
Yes 437 13.1 12.3

Table 2. Comparison of the number of regression parameters
per Gaussian component and the WER (%) performance of
various GMM+DNN/HMM systems with or without context
expansion and unsupervised speaker adaptation.

posteriors has somewhat de-weighted the importance of the
GMMs. As a result, there is less impact from applying MLLR
adaptation to the GMMs.

Finally, we analyse the number of regression parameters
per Gaussian component for the various GMM+DNN/HMM
systems. If the raw CD posteriors were directly used, there
will be 3052 regression weights per Gaussian component. By
using different projection methods, the number of regression
weights can be reduced to about an order magnitude smaller.
It is worth noting that the preliminary results presented in
this paper have considered only the straightforward projec-
tion configurations. It may be possible to achieve further per-
formance gains by adjusting the regression model complexity
(e.g. using groupings other than the CI groups or using a dif-
ferent threshold, ν, for the sparse regression).

6. CONCLUSION AND FUTURE WORK

This paper has proposed combining the GMM and DNN
models using the Temporally Varying Weight Regression
(TVWR) framework to achieve a high quality and adaptable
state probability model for automatic speech recognition.
The resulting GMM+DNN/HMM system is different from
the tandem systems in that the GMMs are trained directly on
the cepstral acoustic features, rather than the DNN-derived
tandem features. This paper has focused on addressing the
issue of incorporating the high dimensional CD-DNN state
posteriors into the TVWR framework without dramatically
increase the system complexity. Specifically, projected CI
state posteriors, sparse regression and context expansion are
introduced to mitigate the problem. Experimental results
show that the proposed GMM+DNN/HMM system outper-
form the baseline DNN/HMM system. In additional, applying
unsupervised speaker adaptation can further improve the per-
formance of the proposed system. Future work will consider
applying speaker adaptive training and discriminative training
to the GMM+DNN/HMM system.
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