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ABSTRACT

We propose a new detection algorithm for MIMO communi-
cation systems employing a two-dimensional marginal of the
Gaussian approximation of the exact discrete distribution of
the transmitted data given the received data. From the 2D dis-
tributions we derive one-dimensional marginals by averaging
all the 2D joint distributions related to a single input symbol.
We prove that this strategy to obtain a 1D distribution from
a set of not necessarily consistent 2D distributions is optimal
(for a specified criterion). The improved performance of the
proposed algorithm is demonstrated on several instances of
the problem of MIMO detection.

Index Terms— Integer Least Squares, Bayesian decod-
ing, MIMO communication systems.

1. INTRODUCTION

We consider a MIMO communication system with n transmit
antennas and m receive antennas. The tap gain from trans-
mit antenna j to receive antenna i is denoted by Hij . In each
use of the MIMO channel a vector x = (x1, ..., xn)

>
is in-

dependently selected from a finite set of complex numbers A
according to the data to be transmitted, so that x ∈ An. We
further assume that in each use of the MIMO channel, x is
uniformly sampled from An. The received vector y is given
by

y = Hx+ ε. (1)

Here, noise is modeled by the random vector ε which is inde-
pendent of x and whose components are assumed to be i.i.d.
according to a complex Gaussian distribution with mean zero
and with known variance σ2. The m×n matrix H comprises
i.i.d. elements drawn from a complex normal distribution of
unit variance. The MIMO detection problem consists of find-
ing the unknown transmitted vector x given H and y.

A simple sub-optimal solution, known as the Zero-
Forcing (ZF) algorithm, is based on a linear decision that
ignores the finite-set constraint and then, neglecting the cor-
relation between the symbols, finding the closest point in A
for each symbol independently. This scheme performs poorly
due to its inability to handle ill-conditioned realizations of
matrix H. Somewhat better performance can be obtained by

using a minimum mean square error (MMSE) Bayesian es-
timation for the continuous linear system. Further improve-
ment can be achieved by the MMSE with Successive Interfer-
ence Cancelation (MMSE-SIC) algorithm which is based on
sequential decoding with optimal ordering [1].

Many alternative methods have been proposed to ap-
proach the ML detection performance (e.g. [2],[3]). The
sphere decoding (SD) algorithm finds the exact ML solution
by searching for the nearest lattice point [4]. Although SD
reduces computational complexity compared to the exhaus-
tive search of the ML solution, it is not feasible for high-order
QAM and/or low SNRs. A preprocessing step based on lat-
tice reduction (LR) has been proposed in order to enhance
the performance of low-complexity suboptimal detectors and
decrease time complexity of tree-search sphere decoding [5].
The performance gap of ML detection and LR based linear
decoders increases greatly for a large number of antennas.

In this paper we propose a detection algorithm
for MIMO communication systems employing a two-
dimensional marginal of the Gaussian approximation of the
exact discrete distribution of the transmitted data given the
received data. From the 2D distributions we derive a one-
dimensional marginals by averaging all the 2D joint distri-
butions related to a single input symbol. We prove that this
strategy to extract 1D information from several 2D distribu-
tions is optimal (for a specified criterion). Although our ap-
proach is based on partial marginalization, it is completely
different from previously suggested partial marginalization
methods (e.g. [6]) that are based on dividing the unknown
transmitted symbols into two subsets. An outer loop is per-
formed on all the possible values of one subset and, for each
passible value, an inner optimization operation finds (Gaus-
sian approximated) optimal values for the second subset. In
our approach all symbols are treated equally and there is no
division of the symbols into two subsets. We first perform
Gaussian marginalization for each pair of symbols. Then we
continue with a discrete marginalization to obtain a one di-
mensional soft decision for each transmitted symbol.

2. AVERAGING GAUSSIAN PROJECTIONS

Given the constrained linear system y = Hx + ε, and a uni-
form prior distribution on x over a finite set of points An, the
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posterior probability function of the discrete random vector x
given y is:

p(x|y) ∝ exp

(
− 1

2σ2
‖Hx− y‖2

)
, x ∈ An. (2)

The notation ∝ stands for equality up to a normalization con-
stant. It can be easily verified that (2) can be written as fol-
lows:

p(x|y) ∝ exp

(
−1

2
(x− z)

>
C−1(x− z)

)
, x ∈ An (3)

where z = (H
>
H)−1H

>
y is the least-squares estimator and

C = σ2(H
>
H)−1 is its variance.

Replacing the discrete constraint x ∈ An in (3) with the
assumption that the distribution of the transmitted vector x
given y is Gaussian we obtain:

fZF (x|y) ∝ exp

(
−1

2
(x− z)

>
C−1(x− z)

)
, x ∈ Rn.

(4)
The Gaussian marginal of the multivariate Gaussian density
fZF (x|y) is:

fZF (xi|y) ∝ exp

(
− (xi − zi)2

2ci,i

)
, xi ∈ R (5)

where ci,i is the i, i entry of the matrix C. Going back from
the Gaussian density (5) to discrete distribution, we can ex-
tract soft decision results:

pZF (xi = a|y) ∝ exp

(
− (a− zi)2

2ci,i

)
, a ∈ A. (6)

Taking the most likely symbol we obtain the Zero-Forcing
(ZF) approximate solution:

x̂i = arg max
a∈A

pZF (a) = arg min
a∈A
|zi − a|. (7)

Motivated by the 1D Gaussian marginalization (5) of (4)
that yields the ZF method, we consider the following 2D
Gaussian marginalization of (4):

f(xi, xj) ∝ exp(−1

2
(xi−zi, xj−zj)D−1i,j (xi−zi, xj−zj)

>
)

(8)
such that z = (H

>
H)−1H

>
y and Di,j is the following 2×2

sub-matrix of the covariance matrix C = σ2(H
>
H)−1:

Di,j =

(
Ci,i Ci,j

Cj,i Cj,j

)
.

Returning from the Gaussian density (8) to a discrete distri-
bution, we obtain the following discrete joint distribution:

pi,j(xi = a, xj = b|y) ∝
(9)

exp

(
−1

2
(a−zi, b−zj)D−1i,j (a−zi, b−zj)

>
)
, a, b ∈ A.

Taking the xi marginal distribution of pi,j(xi, xj):

pi,j(xi = a|y) =
∑
b∈A

pi,j(xi = a, xj = b), a ∈ A (10)

we obtain an estimation of the true marginal probability
p(xi|y) and we can obtain a hard-decision detection by taking
the most likely symbol. The problem is that for j 6= k the 1D
discrete distributions pi,j(xi = a) and pi,k(xi = a) extracted
from the joint distributions pi,j(a, b) and pi,k(a, b) respec-
tively, are not necessarily equal. Unlike the 1D ZF method
where for each i we obtain a single discrete distribution esti-
mation pZF (xi = a) (6), in the 2D case for each i we obtain
n−1 non-consistent joint distributions {pi,j(xi, xj)|j 6= i} (9)
that yield n−1 different 1D distributions {pi,j(xi)|j 6= i} (10).
Thus we obtain n−1 different estimations of the marginal dis-
tribution p(xi|y) we want to compute.

An intuitive way to integrates all the n− 1 estimators
{pi,j(xi)} of p(xi|y) into a single estimator is to form the
unweighed average of these n−1 distributions, i.e.

p̂(xi = a|y) =
1

n−1

∑
j 6=i

pi,j(xi = a), a ∈ A (11)

We show next that this distribution averaging method
is optimal (in a sense defined below). The main
idea is to slightly perturb the n-over-2 joint distributions
{pi,j(xi, xj)|i < j} on A×A into a set {qi,j(xi, xj)|i < j}
of joint distributionsA×A that is consistent in the sense that
the induced marginal distributions coincide, i.e.∑

b∈A

qi,j(a, b) =
∑
b∈A

qi,k(a, b) (12)

for all i, j, k and for all a ∈ A. This can be stated as a formal
optimization problem.
Theorem 1: Let {pi,j(a, b)|1 ≤ i < j ≤ n} be a set of
joint distributions on A × A. Consider the following convex
optimization problem:

min
Q

∑
i<j

||pi,j − qi,j ||2 (13)

such that the minimization is done over all the Q = {qi,j |1 ≤
i < j ≤ n} ∪ {qi|1 ≤ i ≤ n} that satisfy:

qi,j1 = qi 1 ≤ i < j ≤ n (14)

1
>
qi,j = q

>

j 1 ≤ i < j ≤ n (15)

1
>
qi = 1 1 ≤ i ≤ n (16)
qi ≥ 0 1 ≤ i ≤ n. (17)

where 1 is an all-ones vector (we view the joint distributions
onA×A as |A|×|A|matrices and the marginal distributions
on A as |A| × 1 column vectors).
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The unique solution of this convex optimization problem
satisfies:

qi(a) =
1

n− 1

∑
j 6=i

∑
b∈A

pi,j(a, b) (18)

i = 1, ..., n, a ∈ A.

Proof: Instead of directly addressing the optimization prob-
lem stated in Theorem 1, we first solve a relaxed optimization
problem obtained by ignoring constraint (17). Then we show
that the obtained solution satisfies constraint (17) and there-
fore the constraint is redundant.

The Lagrangian of the constrained minimization problem
(ignoring constraint (17)) is:

L(q, µ, λ) =
1

2

∑
i<j

∑
a,b∈A

(pi,j(a, b)− qi,j(a, b))2(19)

+
∑
i<j

∑
a∈A

µai,j(qi(a)−
∑
b∈A

qi,j(a, b))

+
∑
i<j

∑
b∈A

µbj,i(qj(b)−
∑
a∈A

qi,j(a, b))

+
∑
i

λi(1−
∑
a∈A

qi(a))

Setting the derivatives of the Lagrangian to zero we obtain:

∂L

∂qi,j(a, b)
= pi,j(a, b)−qi,j(a, b)−µai,j−µbj,i=0(20)

∂L

∂qi(a)
=

∑
j 6=i

µai,j − λi = 0 (21)

Summing Eq. (20) over all possible values of a and b we
obtain:

1

|A|
∑
a,b∈A

∂L

∂qi,j(a, b)
= µ̄i,j + µ̄j,i = 0 (22)

where for every 1 ≤ i < j ≤ n we use the notation:

µ̄i,j =
∑
a∈A

µai,j , µ̄j,i =
∑
b∈A

µbj,i.

Substituting Eq. (22) and constraint (14) in Eq. (20) yields:∑
b∈A

∂L

∂qi,j(a, b)
=
∑
b∈A

pi,j(a, b)− qi(a)− |A|µai,j + µ̄i,j = 0

(23)
Eq. (21) yields that:∑

j 6=i

µ̄i,j =
∑
a∈A

∑
j 6=i

µai,j =
∑
a∈A

λi = |A|λi (24)

Combining Eq. (23), (21) and (24) we obtain:

1

n− 1

∑
j 6=i

∑
b∈A

∂L

∂qi,j(a, b)
= (25)

Input: A constrained linear LS problem: Hx + ε = y, a
noise level σ2 and a finite symbol set A.

Goal: Find (approx. to) arg minx∈An ‖Hx− y‖2.

Preprocessing:
Compute: z = (H

>
H)−1H

>
y, C = σ2(H

>
H)−1.

Denote the 2× 2 ij sub-matrix of matrix C by

Di,j =

(
Ci,i Ci,j

Cj,i Cj,j

)
.

End

For each pair 1 ≤ i < j ≤ n
For every a, b ∈ A, compute:

φi,j(a, b) = − 1
2 (zi−a, zj−b)D−1i,j (zi−a, zj−b)

>

pi,j(a, b) =
exp(φi,j(a,b))∑

c,d∈A exp(φi,j(c,d))

End
End

For each 1 ≤ i ≤ n

qi(a) = 1
n−1

∑
j 6=i
∑
b∈A pi,j(a, b), a ∈ A

x̂i = arg maxa∈A qi(a)
End

Fig. 1. The ZF-2D Algorithm.

1

n− 1

∑
j 6=i

∑
b∈A

pi,j(a, b)− qi(a)− |A|λi + |A|λi = 0

Therefore, we obtain that the optimal solution satisfies:

qi(a) =
1

n− 1

∑
j 6=i

∑
b∈A

pi,j(a, b). (26)

So far we have ignored constraint (17). However, the optimal
solution (26) is clearly non-negative since it is an average of
marginal distributions that consist of non-negative numbers.
Hence, constraint (17) is redundant; thus this is the optimal
solution to the optimization problem posed in Theorem 1. �

Theorem 1 can be utilized to obtain the optimal strategy
for extracting marginal distributions from the non-consistent
n-over-2 2D joint distributions {pi,j} obtained by the 2D
Gaussian marginalization. For each input symbol xi we com-
bine all the n−1 2D discrete distributions {pi,j |j 6= i} (9) by
simply averaging the n−1 induced marginals (18). Finally,
we obtain hard decision decoding by taking the most proba-
ble symbol. Thus we obtain a 2D variant of the Zero-Forcing
MIMO decoding algorithm. We dub this method the “Two-
Dimensional Zero Forcing (ZF-2D) Algorithm”. The ZF-2D
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is summarized in Fig. 1. In a similar way we can obtain a 2D
version of MMSE. A 2D version of the MMSE-SIC, denoted
by MMSE-SIC-2D, is formed by sequential decoding the in-
put symbols using MMSE-2D with optimal ordering [1].

Fig. 2. Results for a 10× 10, QPSK, MIMO system.

We next compute the computational complexity of the
MMSE-2D. The preprocessing step of computing the co-
variance matrix σ2(H

>
H + σ2

e I)
−1 is common to MMSE

and MMSE-2D algorithms. The complexity of this pre-
processing step is O(n2m) (if m < n we can utilize the ma-
trix inversion lemma for the matrix inversion). The complex-
ity of computing the discrete 2D distributions and computing
the average marginals isO(n2|A|2) (regardless of the number
of receive antennas). The exponent operation used to obtain
the discrete 2D distribution can be efficiently implemented
using a lookup table.

Fig. 3. Results for a 18× 18, QPSK, MIMO system.

3. EXPERIMENTAL RESULTS

In this section we provide simulation results for the proposed
detector over various MIMO systems. We assume a frame
length of 100, i.e., the channel matrix H is constant for 100
channel uses. The channel matrix comprised iid elements
drawn from a zero-mean normal distribution of unit variance.
We used 10,000 realizations of the channel matrix. This re-
sulted in 106 vector messages. The performance of the pro-
posed algorithm is shown as a function of the variance of the
additive noise σ2. The signal-to-noise ratio (SNR) is defined
as 10 log10(Es/N0) where Es/N0 = ne

σ2 (n is the number
of variables, e = 1

|A|
∑
a∈A a

2 and σ2 is the variance of the
Gaussian additive noise). We show here the performance of
the proposed approaches based on 2D Gaussian projections.
The MMSE-2D and MMSE-SIC-2D are compared to the cor-
responding 1D projection methods MMSE and MMSE-SIC.
In the implementations of MMSE-SIC and MMSE-SIC-2D
we used the same optimal ordering for the successive interfer-
ence cancelation [1]. The proposed method are also compared
to a MMSE decoder combined with lattice reduction (MMSE-
LR)[5, 7, 8] based on the Lenstra-Lenstra-Lovasz (LLL) algo-
rithm [9]. Finally, the MMSE-2D is compared to maximum-
likelihood (ML) detection. The ML score was implemented
using the Schnorr-Euchner variant of sphere decoding (SD-
SE) with an infinite radius [10, 4].

Fig. 2 shows the symbol error rate (SER) versus SNR for
a 10 × 10 complex Quadrature Phase Shift Keying (QPSK)
MIMO system. Fig. 3 shows similar results for larger sys-
tem size. It can be be seen from the figures that in all cases
the performance of the MMSE-2D algorithm is better than
the MMSE and the performance of the MMSE-SIC-2D al-
gorithm is better than the performance of the MMSE-SIC. In
all cases the improvement is significant. We can also see from
the simulation figures that the MMSE-2D is always better that
MMSE-LR is low SNR and as the number of the transmitted
antennas increases, MMSE-2D has better performance than
MMSE-LR also in high SNR.

In this paper we concentrated on hard decision decoding.
The method we presented computed posterior probabilities
for each transmitted symbol. Hence we can easily modify our
solution to provide soft decision information needed in coded
systems. The proposed method can be combined into com-
munication systems with coding and interleaving. It is useful
both for single carrier and OFDM systems. It can serve as a
MIMO decoder for wireless communication systems. Using
the a-posteriori probability distribution of the symbols we can
easily estimate the a-posteriori probability and the likelihood
ratio for the bits.
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