
LOW COMPLEXITY DECODING OF VARIABLE LENGTH SOURCE-CHANNEL CODES

Hugues Mercier

Université de Neuchâtel
Institute of Computer Science
2000 Neuchâtel, Switzerland

Abdul Wasae, Fabrice Labeau

McGill University
Electrical and Computer Engineering
Montréal (Québec) Canada H3A 0G4

ABSTRACT

Soft source decoders, in conjunction with error correcting
channel codes, can be used to improve the error resilience
of digital communication systems based on variable length
codes. In this paper, we present a novel approach to reduce
the complexity of maximum a posteriori variable length de-
coders implemented on a bit-symbol trellis. The decoding al-
gorithm is implemented in a narrow corridor along the trellis
diagonal to reduce the decoder complexity. Furthermore, by
periodically adjusting the corridor boundaries, a significant
reduction in complexity is achieved at the price of a small
degradation in decoding performance.

Index Terms— Exponential Golomb Code, variable
length joint source-channel decoder, maximum a posteriori
algorithm, bit-symbol trellis, corridor decoding.

1. INTRODUCTION

Most current data compression schemes use variable length
codes (VLC). Latest image and video compression stan-
dards achieve compression by removing redundancy from
the source symbols, however this makes them very sensi-
tive to channel noise. Furthermore, hard decoding results
in error propagation and synchronization losses. To counter
these issues various schemes can be used that make use of
source statistics and soft information at the channel output
[1]-[4]. These also include the use of joint source-channel
designs exploiting the residual source redundancy to achieve
error resilience [2, 3]. All these schemes assume that some
a priori information is available at the decoder: either the
number of symbols or the number of bits (or both) is sent as
side information to the receiver. The classical maximum a
posteriori (MAP) decoding algorithm is used either to search
for the optimal path through the trellis in case of sequence
estimation, or to calculate symbol a posteriori probabilities
in case of symbol by symbol estimation. However, when
used on variable length codes, MAP decoding is costly due to
the lack of synchronization between symbol sequences and
coded bit sequences, resulting in algorithms with prohibitive
complexity. The problem of reducing this high complexity
has been addressed in several works [5]-[7].

In this paper, we use a modified MAP decoding algorithm

taking advantage of the soft information from the corrupted
received sequences and the residual redundancy of the source
code. Inspired by a technique originally proposed in [8] for
channel codes against synchronization errors, we adapt it to
reduce the complexity of VLC source-channel decoders. Un-
like prior work, this technique neither requires any modifi-
cation of the VLC tables nor does it require merging states.
Instead, we use a generic bit-symbol trellis [4, 9] and reduce
its size by making use of the source statistics and received
sequence.

Our first insight is to discard the nodes of the trellis which
are less likely to be followed by the true path. The MAP
algorithm is thus effectively implemented on the part of the
trellis formed by a narrow corridor along the diagonal. This
reduces the trellis size, with possible degradation in decoding
performance depending upon the corridor width. Our second
insight is to divide the symbol stream into blocks and to im-
plement the MAP decoding algorithm on each block. After
every block, the position of the corridor is adjusted towards
the most likely location of the true path, resulting in a large
portion of the trellis being pruned. This further reduces sig-
nificantly the size of the memory required by the decoding
algorithm. Finally, we show that corridor decoding can work
for practical systems by proving that it performs well when
the input statistics are not accurately known at the decoder.
The code used in this paper is the Exponential Golomb Code
(EGC), although we note that the proposed techniques could
be used with any variable length code.

2. EXPONENTIAL GOLOMB CODE AND MAP
DECODING ALGORITHM

Most data compression methods based on variable length
codes employ Huffman or Golomb codes, and in this paper
we use Exponential Golomb Codes (EGC), which are used
in video compression standards such as H.264/MPEG-4 AVC
[10]. Table 1 shows the first three classes of the EGC: Class j
has 2j−1 codewords, each codeword consisting of a sequence
of j − 1 ’0’s, followed by a 1, followed by j − 1 more bits.
One of the advantages of EGCs is their low redundancy, but
unfortunately, like all good VLCs, they tautologically have
poor error-correction capabilities (the minimum distance of
EGCs is 1).

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 1930

Class Value Codeword
C1 0 1
C2 1 010

2 011
C3 3 00100

4 00101
5 00110
6 00111

Table 1. Exponential Golomb Code (EGC)

Fig. 1. Bit-symbol trellis of the first 7 codewords of the EGC.
Knowledge of the number of bits (9) and symbols (5) elimi-
nates paths not containing 9 bits and 5 symbols (dotted lines).

The correspondence between symbols, codewords, and
corrupted received bit sequences can be represented using a
bit-symbol trellis, as shown in Figure 1. Since it is assumed
that the number of transmitted bits and symbols is known at
the receiver, the trellis termination point is known and the pos-
sible paths in the trellis are bounded by a parallelogram. In
Figure 1, the receiver knows that 5 symbols corresponding to
9 bits were transmitted, thus the trellis is represented by the
solid lines. A BCJR-like [9, 11, 12] maximum a posteriori
(MAP) decoding algorithm is used to decode the EGC on the
bit-symbol trellis. For variable length codes, the BCJR al-
gorithm must be modified, but for space reasons we do not
describe it here and point the readers to the extended version
of this work for additional details [13].

3. CORRIDOR DECODING

The bit-symbol trellis has a prohibitive decoding complexity
in Θ(k2), where k is the number of symbols in a packet. Our
first contribution to reduce the complexity is to decode along a
narrow corridor of width δ along the trellis diagonal, as shown
in Figure 2(b). This is supported by the fact that the deviation
of the true path from the diagonal is limited by the probabil-
ity distribution of the VLC and the number of symbols. To
illustrate this, Figure 2(a) shows the color map of 600 paths
taken at random in a bit-symbol trellis. The code used is the
EGC with optimal probability distribution [14]. The colors

represent the frequency with which nodes were traversed. For
instance, the black nodes were traversed by the true path more
than 70 times. The white line in the diagonal represents the
average length of the variable length code in bits per symbol.
It is evident from the figure that for fixed channel conditions
the true path almost always stays within a narrow corridor
along the diagonal of the trellis. In the following subsection,
we show how the proper width for this corridor can be deter-
mined.

(a) True path position

(b) Fixed corridor (c) Adjustable corridor

Fig. 2. Decoding in a narrow corridor around the most likely
path in the trellis.

3.1. Corridor Width
The path taken by the decoder is expected to deviate from
the trellis diagonal depending on the source statistics and the
number of symbols in a packet. Consider an EGC with N
classes and 2N − 1 codewords, with Codeword i having ni
bits and occurring with probability pi. The average code-
word length n and its variance σ2

c are given by n = E[n] =

2N−1∑
i=0

nipi and σ2
c = V ar[n] =

2N−1∑
i=0

n2i pi −

(
2N−1∑
i=0

nipi

)2

.

Let us assume that an EGC randomly generates k sym-
bols according to probabilities pi. The total length n̂1:k of

the packet in bits is given by n̂1:k =
k∑

j=1

nj with mean

E[n̂1:k] = E

[
k∑

j=1

nj

]
=

k∑
j=1

E[nj] = k ·
2N−1∑
i=0

nipi and

1931

variance V ar[n̂1:k] = V ar[n1 + n2 + · · · + nk]. Since
all the symbols are assumed to be independent it follows

that V ar[n̂1:k] = k

2N−1∑
i=0

n2i pi −

(
2N−1∑
i=0

nipi

)2
 . There-

fore, the standard deviation σ in bits of the true path from
the diagonal in terms of the codeword length ni, proba-
bility distribution pi and number of symbols k is given by

σ =

√√√√√k

2N−1∑
i=0

n2i pi −

(
2N−1∑
i=0

nipi

)2
 =

√
kσc.

We therefore select the corridor width as δ , c
√
kσc, where

c is a scaling factor. Only paths within this corridor are
considered during the decoding process, which reduces the
computational cost of the decoder from Θ(k2) to Θ(k

√
k).

4. ADJUSTABLE CORRIDOR DECODING

Our second contribution is to further decrease the decoding
complexity by making the corridor adjustable, as shown in
Figure 2(c). The decoder periodically adjusts the corridor in
the direction of the most likely path, and by doing this the
corridor can be made much narrower. The use of an adjustable
corridor was first proposed in [8]. In the previous section,
we showed that the number of symbols per packet is one of
the factors affecting the corridor width. If the packet size is
reduced, then the corridor width required to keep the most
likely path within the corridor is also reduced. The adjustable
corridor further exploits this idea by dividing the packets into
smaller blocks. The corridor width becomes a function of
the block size rather than the packet size, hence the decoding
complexity is decreased to Θ(k).

The forward and backward recursions of the MAP decod-
ing algorithm are initially executed on the first block. In order
to adjust the corridor, the node with the highest a posteriori
probability (APP) at the end of the block is used as the center
of the corridor for the next block, as shown in Figure 3(a).
The process is repeated for the following blocks, and the cor-
ridor position is updated after each block until the end of the
symbol stream is reached. The corridor thus closely follows
the most likely path with high probability. When implement-
ing the MAP decoding algorithm on a block, we need to be
careful of the way we set the initial conditions for the forward
and backward recursions. For the forward recursion, the APP
distribution of the nodes at the end of the previous block is
taken as the a priori probability distribution at the beginning
of the next block. For the backward recursion, the probabil-
ity distribution of the nodes at the end of forward recursion is
taken as the initial condition.

We add a buffer at the end of each block to form an ex-
tended block when performing the forward/backward recur-
sions, as shown in Figure 3(b). This provides a better esti-
mate of the APPs of the nodes at the block boundaries. The
forward recursion of the next block starts at the original block
boundary rather than at the extended block boundary.

(a) Adjusting the corridor (b) End of block buffer

Fig. 3. Decoding at block boundaries.

5. SIMULATION RESULTS

In this section, we apply our MAP decoding algorithm on
a bit-symbol trellis using the proposed fixed and adjustable
corridor decoding techniques. The simulations are done over
an AWGN channel using BPSK modulation. Only a variable
length source code is used without any other error-correcting
mechanism. The source is memoryless and generates ran-
dom symbols from the EGC codebook with an experimental
probability distribution generated from four standard video
sequences [15]: Stefan, News, Football and Foreman, with
QCIF size (176x144) each having 100 frames encoded using
the H.264 standard. More details regarding the simulation
parameters can be found in the extended version of this work
[13]. The number of symbols and bits in a packet are assumed
to be known at the receiver, and each packet has 1000 sym-
bols. The results show the SNR against the average symbol
error rate of 5000 simulation runs. The Levenshtein distance
[16] is used as the error rate metric; this is more suitable than
the Hamming distance due to the fact that the decoding of
variable length codes suffers from synchronization errors.

We now present a small sample of our results. First, Fig-
ure 4 shows the performance of the fixed corridor decoder
with different corridor widths. It should be pointed out that
decoding over the full trellis was indistinguishable from a cor-
ridor width of 6 standard deviations for all our simulations.
The decoder complexity is determined by measuring the av-
erage time taken for a simulation. For a stream of 1000 sym-
bols and a corridor width of 4 standard deviations from the
trellis diagonal, the fixed corridor decoder is 4.7 times faster
than the full trellis decoder, with no performance degradation
at SNR below 9dB. At low SNR, the corridor width can be
reduced further since the channel becomes dominated by the
errors caused by the poor correction capabilities of the codes
instead of the probability of leaving the decoding corridor.
Simulation results for the adjustable corridor decoder can be
found in [13], although we mention that the adjustable cor-
ridor decoder is approximately 15 times faster than the full
trellis decoder with a corridor width of 4 standard deviations
from the trellis diagonal.

The performance comparison of fixed and adjustable cor-
ridor decoding, shown in Figure 5, is done by setting the cor-

1932

Fig. 4. SER versus SNR performance of the fixed corridor de-
coder for several corridor widths. Corridor widths are shown
as multiples of the standard deviation of the EGC from the
expected path.

Fig. 5. SER versus SNR performance of the adjustable and
fixed corridor decoders of equal complexities with 1000 sym-
bol packets. The block size of the adjustable corridor decoder
is 100 and the buffer size is 1.

ridor width such that both methods have equal decoding com-
plexities. It shows that the adjustable corridor significantly
outperforms the fixed corridor at high SNR. This is due to the
fewer synchronization errors introduced at the block bound-
aries at high SNR, which allow very narrow adjustable corri-
dors.

5.1. Matched vs Mismatched Input Statistics
The probability distribution over the codewords used in the
previous section, which we denote as P1, was taken from
standard video sequences [15]. However, since the input
statistics are not always known at the decoder, a compari-
son is made between matched and mismatched input-output
statistics to compare the decoder performance in both cases.
The matched scenario is further divided into two cases: the
first case uses the practical distribution P1, whereas the sec-
ond case uses the theoretical EGC distribution, denoted P2,
which minimizes the residual code redundancy and given by
pi = 2−(2i−1)

1−2−N .

Fig. 6. Matched versus unmatched input-output statistics:
SER versus SNR performance of the adjustable corridor de-
coder.

In the matched cases both the encoder and decoder use the
same codeword probability distribution. On the other hand,
in the mismatched case the input data is based on P1 and the
decoding is based on P2. Figure 6 shows the performance
of the adjustable corridor decoder for the three cases men-
tioned above. The matched case with the practical distribu-
tion P1 performs slightly better. This is simply because P1

has a lower entropy than P2. The performance degrades for
the mismatched case, however this degradation is small con-
sidering that the exact input distribution is not available at the
decoder. This provides evidence that corridor decoding can
work for real-life practical systems.

6. CONCLUSION

We presented a novel approach to reduce the complexity of a
joint source-channel MAP decoding algorithm implemented
on a bit-symbol trellis. We showed that a random path taken
through the trellis has a high probability of staying within a
narrow corridor along the trellis diagonal. We used this be-
havior to show that pruning the trellis by using a corridor
of reasonable width, fixed or adjustable, significantly reduces
the computational cost of the decoder with a marginal effect
on its accuracy. We also showed that the adjustable corridor
performs better at high SNR and is therefore the clear decod-
ing choice when lower complexity is required.

The MAP decoding algorithm implemented in this paper
uses only a VLC code. The performance could be improved
by incorporating an inner error-correcting code for both the
fixed and adjustable corridor decoders. Furthermore, the de-
coder takes soft information as inputs and returns soft outputs
in the form of the a posteriori probabilities of the symbols.
This soft output could further be utilized in iterative decoders,
where information is passed between two or more decoders in
an iterative process to improve performance.

1933

7. REFERENCES

[1] S. Kaiser and M. Bystrom, “Soft decoding of variable-
length codes,” in Proceedings of the 2000 IEEE Interna-
tional Conference on Communications (ICC), 2000, pp.
1203–1207.

[2] A. H. Murad and T. E. Fuja, “Robust transmission of
variable-length encoded sources,” in Proceedings of the
1999 Wireless Communications and Networking Con-
ference (WCNC), 1999, pp. 968–972.

[3] M. Park and D. Miller, “Joint source-channel decoding
for variable-length encoded data by exact and approxi-
mate MAP sequence estimation,” IEEE Transactions on
Communications, vol. 48, no. 1, pp. 1–6, 2000.

[4] R. Bauer and J. Hagenauer, “Symbol by symbol MAP
decoding of variable length codes,” in Proceedings of
the 3rd ITG Conference on Source and Channel Coding,
2000.

[5] Tsu ming Liu, Sheng zen Wang, Wen hsiao Peng, and
Chen yi Lee, “Memory efficient and low complexity
scalable soft VLC decoder for the video transmission,”
in Proceedings of the 2005 IEEE Asia-Pacific Confer-
ence on Circuits and Systems, 2005, pp. 673–676.

[6] G. Mohammad-Khani, C. Lee, M. Kieffer, and
P. Duhamel, “Simplification of VLC tables with appli-
cation to ML and MAP decoding algorithms,” IEEE
Transactions on Communications, vol. 54, no. 10, pp.
1835–1844, 2006.

[7] H. Nguyen and P. Duhamel, “Reduced complexity VLC
sequence decoder,” in Proceedings of the 2004 Data
Compression Conference, 2004.

[8] Matthew C. Davey and David J. C. MacKay, “Reliable
communication over channels with insertions, deletions
and substitutions,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 687–698, 2001.

[9] P. Duhamel and M. Kieffer, Joint Source-Channel De-
coding: A Cross-Layer Perspective with Applications in
Video Broadcasting over Mobile and Wireless Networks,
pp. 123–128, EURASIP and Academic Press Series in
Signal and Image Processing, 2010.

[10] D. Marpe, T. Wiegand, and G. Sullivan, “The
H.264/MPEG–4 advanced video coding standard and its
applications,” IEEE Communications Magazine, vol.
44, no. 8, pp. 134–143, 2006.

[11] Shu Lin and Daniel J. Costello, Error Control Coding,
Paerson Prentice Hall, second edition, 2004.

[12] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol error
rate,” IEEE Transactions on Information Theory, vol.
20, no. 2, pp. 284–287, 1974.

[13] Abdul Wasae, “Low complexity decoding of variable
length codes,” M.Eng. Report, McGill University, 2011.

[14] Pierre Siohan, “Exponential golomb codes and their ap-
plication to JSCD,” Private communication, 2005.

[15] Available at http://media.xiph.org/video/
derf/.

[16] Vladimir I. Levenshtein, “Binary codes capable of
correcting deletions, insertions, and reversals,” So-
viet Physics-Doklady, vol. 10, no. 8, pp. 707–710, Feb.
1966, Translated from Doklady Akademii Nauk SSSR,
163(4):845-848, 1965 (in Russian).

1934

