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ABSTRACT

We develop a linear programming based approach for the
joint detection and decoding of LDPC coded distributed
space-time signaling transmitted in a wireless relay network.
Traditional receivers typically decouple the detection and de-
coding processes as two separate blocks or require iterative
turbo exchange of extrinsic information between the soft de-
tector and decoder. We exploit the constraints imposed on the
channel input signals and jointly consider the training sym-
bols as well as the LDPC code information by formulating
a unified linear programming (LP) receiver. Moreover, in
consideration of the vast amount of LDPC parity check in-
equalities, we present an adaptive procedure to significantly
reduce the complexity of the proposed LP receiver.

Index Terms— Linear programming, LDPC, joint detec-
tion and decoding, space-time signaling.

1. INTRODUCTION

This work focuses on joint detection and decoding of LDPC
coded wireless transmissions over multiple-input multiple-
output (MIMO) systems. For MIMO transmission, space-
time code (STC) has proven highly effective in its ability to
deliver high throughput and full spatial diversity gain with-
out prior channel information. While space-time MIMO
transmission requires multiple co-located transmit antennas,
distributed space-time code (DSTC) transmission becomes
a natural alternative for smaller mobile devices with size
constraint by letting multiple single antenna nodes to form
virtual MIMO systems [1]. The detection of STC signals has
been investigated in the literature [2, 3], typically relying on
estimated channel information at the receiver. When STC or
DSTC transmitters fail to provide sufficient pilot symbols for
channel estimation, however, blind detection of STC includ-
ing the full rate Alamouti code has also been proposed in [4]
to achieve near-maximum-likelihood performance.

In spite of the much improved capacity, wireless chan-
nel fading and noise effects can still lead to substantial detec-
tion errors. In practice, forward error correction (FEC) codes
are routinely adopted in conjunction with MIMO systems.
For over a decade, LDPC codes have become highly popular
owing to their excellent error correction performance [5, 6].

This material is based on works supported by the National Science Foun-
dation Grants CNS-1147930, ECCS-1307820 and CIF-1321143.

LDPC codes, when decoded via the simple sum-product al-
gorithm (SPA), can approach Shannon limit with reasonable
decoding complexity [7]. When LDPC codes are applied in
MIMO-OFDM transmissions [8], the receiver should ideally
apply a joint maximum likelihood (ML) detection and decod-
ing algorithm. However, if the LDPC codes are sufficiently
long, such an optimum joint receiver is too complex and dif-
ficult to implement.

Most STC detection algorithms for MIMO system are
separate from the FEC code decoder. The reason lies in
the fact that symbol detection in STC typically operates in
either the real or the complex field while FEC decoding gen-
erally operates in the Galois field. Despite the success of
sum-product algorithm (SPA) for LDPC decoding, its high
nonlinearity during message passing makes it challenging to
integrate with the MIMO detection step. Thus, joint MIMO
detection and FEC decoding receivers in the literature are
typically based on the exchange of soft information to form
a turbo-equalizer/detector [9, 10]. Nevertheless, these be-
lief propagation based turbo receivers do not admit a unified
optimization formulation. The convergence of such iterative
receivers is also less predictable while exchanging unreliable
soft information at low to moderate SNRs may even worsen
both detection and decoding.

Recently, Feldman et al. [11] proposed an LP-based
LDPC decoding scheme, which is amendable to existing de-
tection algorithms. By taking the advantage of LP decoding,
Cui et al. [12] proposed an l1 norm based joint detector and
decoder for MIMO systems, but it cannot directly tackle
higher-order modulations. In [13], Flanagan developed a
unified framework for LP receivers, and more recently Li
et al. [14] generalized Flanagan’s method to MIMO-OFDM
systems. We note that all these methods assume perfect chan-
nel state information (CSI) or closed-form estimates at the
receiver.

In this work, we present a new joint detection and decod-
ing algorithm for LDPC-coded DSTC transmissions. Utiliz-
ing the minimum peak distortion (MPD) criterion that targets
QAM data symbols, we exploit limited pilot symbols to avoid
the all-zero trivial solution and to resolve rotational ambigu-
ities. We further improve the joint receiver performance by
incorporating the LDPC code information through a set of LP
decoding constraints. We also apply a subspace approach for
noise suppression. Since both QAM data symbols and lim-
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ited pilot symbols take part in receiver optimization, this joint
detection-decoding receiver is semi-blind in nature. The uni-
fication of MIMO detection, pilot symbol, LDPC code and
subspace separation constraints in this LP receiver can help
improve the detection performance and data reliability.

We note that the MPD criterion using LP was first pro-
posed for blind equalization of single antenna data transmis-
sion in [15], and was later extended in [16] to include pi-
lot constraints and LDPC code constraints for single-input
single-output (SISO) inter-symbol interference (ISI) channel.
Our new work in this paper represents a non-trivial extension
to LDPC coded DSTC systems. We also substantially reduced
the receiver complexity without sacrificing performance in or-
der to accommodate practical (longer) LDPC codes.

2. DISTRIBUTED SPACE-TIME TRANSMISSION

Consider the block diagram of a distributed wireless relay
network shown in Fig. 1 with one transmitter, one receiver,
and multiple amplify-forward (AF) relays. The transmitter,
receiver and relays are assumed to possess 1 transmit an-
tenna, N receive antennas, and a total of R relay antennas,
respectively. Independent Rayleigh flat-fading channels are
assumed for both transmitter-relay and relay-receiver chan-
nels. Furthermore, a quasi-static fading channel lasting for
two hops is assumed. We let the data symbols {sl}ns

l=1 be
generated from a square QAM constellation A that satisfies
M = maxsl∈A |Re{sl}| = maxsl∈A |Im{sl}|.

We now describe the half-duplex two-phase relay proto-
col for the DSTC network [17]. Without loss of generality,
consider one block of ns symbols. During the first phase, the
symbols s = [s1 . . . sns

]T , normalized as E{sHs} = ns, are
transmitted. The i-th relay antenna receives signal

ri =
√
Psfis + nr,i, 1 ≤ i ≤ R (1)

where Ps is the average transmit power, fi ∼ CN (0, σ2
f ) is

the channel gain from the transmitter antenna to the i-th re-
lay antenna, and nr,i is the complex additive white Gaussian
noise (AWGN).

Upon receiving ri, the i-th AF relay linearly processes ri
and its conjugate r∗i by using the L × ns precoding matrices
Ai and Bi, respectively.

ti =

√
Pr

Ps + 1
(Airi + Bir

∗
i ) =

√
Pr

Ps + 1
Ăir̆i (2)

where Pr is the average transmit power for each relay an-
tenna. Note that, for simplicity, we only consider two spe-
cial cases that either Ai = 0,Bi is unitary or Ai is unitary,
Bi = 0 in Eq. (2). In other words, Ăi is either Ai or Bi, and
r̆i is either ri or r∗i [18].

In the second phase, the relay nodes send signals to the
receiver. Assuming signals from all relays share the same
channel and are synchronized, the received signal matrix Y
at the receiver is simply

Y = G
[
t1 . . . tR

]T
+ Nd (3)

where G is an N × R channel matrix with each element fol-
lowing CN (0, σ2

G) and Nd is an AWGN matrix.
By defining β , PsPr(Ps + 1)−1, we can write the

transceiver equation in a more compact form

Y =
√
βΨ̃S + W (4)

where S ,
[
Ă1s̆ . . . ĂRs̆

]T
, (5)

Ψ̃ , G diag{f̆1, . . . , f̆R}, (6)

W ,

√
Pr

Ps + 1
G
[
Ă1n̆r,1 . . . ĂRn̆r,R

]T
+ Nd. (7)

Analogous to multiple-antenna STC, Ψ̃ is the end-to-end
channel matrix, S is the distributed space-time codeword
whereas W is the equivalent (colored) noise at the receiver.

To simplify later derivations, the standard DSTC is trans-
formed to an equivalent spatial diversity (ESD) model that
converts the space-time structure into the channel [4].

y =
√
βΨs + w. (8)

For the case of the rate 1 Alamouti code

Ψ̃ =
[
ψ̃1 ψ̃2

]
⇒ Ψ =

[
ψ̃1 ψ̃2

ψ̃
∗
2 −ψ̃

∗
1

]
(9)

y =

[
Y(:, 1)
Y(:, 2)∗

]
, w =

[
W(:, 1)
W(:, 2)∗

]
(10)

in which the Matlab notation D(:, i) is used to represent the
i-th column of matrix D.

3. JOINT DSTC DETECTION AND DECODING

To start our receiver design, we consider K blocks of data
symbols. Moreover, both sides of Eq. (8) are divided by

√
β.

With a little abuse of notations on the noise vector, the new
ESD transceiver equation is

y[k] = Ψs[k] + w[k], 1 ≤ k ≤ K. (11)

Here we define the optimization criterion based on QAM
symbols before various constraints to tighten the solution.

3.1. Convex Peak Distortion Cost Function
Let Θ = [θ1 . . . θns

] ∈ CNL×ns denote linear detector
(matrix) for the ESD model. Therefore, the detection output
ŝ[k] = ΘHy[k]. It is thus clear that the l-th column θl of the
matrix Θ is for recovering the l-th symbol ŝl[k] = θHl y[k] in
equalized data vector ŝ[k].

Given QAM signal transmission, we apply the MPD cri-
terion proposed in [15]. Specifically, define the cost function
for the l-th equalizer θl as

J(θl) =
1

2M
max

k
[|Re{ŝl[k]}|+ |Im{ŝl[k]}|]

=

ns∑
j=1

[|Re{cj,l}|+ |Im{cj,l}|]
(12)
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Fig. 1. System Model for DSTC

where cTl = θHl Ψ = [c1,l . . . cns,l] is the l-th concatenated
channel-detector response vector. Because the objective func-
tion J(θl) is convex in |Re{cj,l}| and |Im{cj,l}| while the
concatenated response cl is linear in θl, we can see that J(θl)
is a convex function of θl. Note that the minimization of
J(θl) without constraint would result in a trivial solution θl =
0. It is therefore important to define proper constraints to
avoid the all-zero output solution.

3.2. Pilot Constraints Integration
To prevent the minimization of J(θl) from becoming trivial,
a simple anchor tap constraint is adopted in [4] and [15] for
blind equalization. Such constraint, however, is insensitive to
phase-rotational and scalar-multiplicative ambiguities. As a
result, further integration with other constraints can be chal-
lenging. To resolve the triviality and ambiguities, we propose
to apply a limited number of pilot constraints.

Ideally, we expect the detector output to match the pilot.
However, in the presence of channel noise, the exact pilot con-
straint ŝl[k] = pl[k] typically does not hold. Instead, we pro-
pose to apply constraints in the form of squeezing box [16].

|Re{ŝl[k]} − Re{pl[k]}| ≤ τRp [k], k ∈ KP (13a)

|Im{ŝl[k]} − Im{pl[k]}| ≤ τ Ip [k], k ∈ KP (13b)

where KP is the pilot index set; τRp [k]’s and τ Ip [k]’s are opti-
mization variables to be included in the objective function.

3.3. LDPC Codeword Constraints
We advocate the integration of detection and decoding at the
receiver in a unified optimization process. Instead of applying
the transitional belief propagation between the MAP detector
and the SPA decoder in turbo equalization, we would like to
incorporate a set of convex (and in fact, linear) constraints
generated from the LDPC binary constraints.

Consider an LDPC parity check matrix H with Mc rows
and Nc columns. Denote the set of neighbors of the m-th
check node as Nm. For a subset F ⊆ Nm with odd cardi-
nality |F|, we can get the following polytope constraints [11]∑

n∈F
f [n]−

∑
n∈(Nm\F)

f [n] ≤ |F| − 1 (14a)

0 ≤ f [n] ≤ 1 (14b)

where f [n] is the n-th bit in an LDPC codeword.
To incorporate the polytope constraints that involve the

information bits, we need to employ additional constraints

that connect information bits {f [n]} and the QAM symbols
{z[k]}. Taking 4-QAM as an example, the Gray mapping be-
tween symbols and bits admits the affine relationship

z[k] = ((1− 2f [2k]) + j(1− 2f [2k − 1])) /
√

2 (15)

where the complex QAM symbol z[k] ∈ A. Under noise, the
detector output sample does not exactly match the QAM con-
stellation point. For this reason, we again use the squeezing
box technique to relax the LDPC constraints as
|Re{ŝl[k]} − Re{z[k]}| ≤ τRc [k], k ∈ KD (16a)

|Im{ŝl[k]} − Im{z[k]}| ≤ τ Ic [k], k ∈ KD (16b)

where KD is the data symbol index set.

3.4. Subspace Separation Constraints
Another condition we exploit is the orthogonality between
signal and noise subspace. A clean signal ys[k] = Ψs[k]
lies in the column space of Ψ. The noisy signal y[k] can be
decomposed into column space of Ψ and the null space of
ΨT , denoted as R(Ψ) and R(Ψ⊥), respectively. We want
the detector θl to be orthogonal to R(Ψ⊥) so as not to waste
effort in subspace without any signal component.

Singular value decomposition (SVD) on a frame of data
[y[1] . . . y[K]] = UΛVH = [ Us︸︷︷︸

ns

Un︸︷︷︸
NL−ns

]ΛVH (17)

where U and V are unitary. Un spans the noise space, i.e.,
R(Ψ⊥) = R(Un). Therefore, we have the following sub-
space separation constraints

UH
n θl = 0. (18)

4. UNIFIED LP AND COMPLEXITY REDUCTION

To summarize, our unified LP (ULP) for the detection of
DSTC is as follows:

min.
θl

λeq(τReq + τ Ieq) + λp

|KP |∑
k=1

(τRp [k] + τ Ip [k])

+ λc

|KD|∑
k=1

(τRc [k] + τ Ic [k])

s.t. − τReq ≤ Re{ŝl[k]} ≤ τReq, k ∈ KD

− τ Ieq ≤ Im{ŝl[k]} ≤ τ Ieq, k ∈ KD

[Pilot Constraints (13)]
[LDPC Constraints (14) (15) (16)]
[Subspace Constraints (18)]

τReq, τ
I
eq, τ

R
p [k], τ Ip [k], τRc [k], τ Ic [k] ≥ 0

(19)
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where λeq , λp and λc are weights applied for MPD cost, pilot
constraints, and LDPC code constraints, respectively. Note
that after recovering θl, we can utilize the code-dependent
mapping to obtain the remaining columns of Θ; cf. [4].

We note that the ULP in (19) has a complexity issue.
In fact, the total number of constraints and consequently the
complexity of the unified LP would be quite high for long
LDPC codes or codes of large row weights. For complex-
ity reduction at the receiver, we can adopt the cutting plane
method [20] in which only violated parity check inequali-
ties are added. Accordingly, our adaptive LP (ALP) receiver
works as follows:

S1 Initialize the LP detection without constraints (14a).
S2 Solve the current LP to obtain the detector θl and de-

modulate the symbols to bits {f [n], 1 ≤ n ≤ Nc}.
S3 If cuts (violated constraints) are found by using {f [n]},

add them to LP and return to S2; otherwise, go to S4.
S4 Use mapping to obtain Θ and detect frame symbols.

5. SIMULATIONS

To empirically illustrate performance of the proposed re-
ceivers, we test rate-1/2 LDPC codes of different lengths,
listed in Table 1 [21]. For comparison, we test the LP re-
ceiver without LDPC constraints (14) (15) (16) and label
this receiver as disjoint LP (DLP). We also compare our re-
sults against pure training-based ML detection that uses least
square channel estimate.

In the simulations, we choose 4-QAM data transmission.
The network has 1 transmit antenna, 2 relay nodes each with 1
antenna, and 2 receive antennas. The source-relay and relay-
destination channel coefficients and noise elements all follow
CN (0, 1). We apply the optimum power allocation Ps =
RPr [17]. Our DSTC uses Alamouti code. Two pilot sym-
bols are transmitted from the source; one is chosen from the
QAM constellation and the other is 0. As for the choice of
weights λ’s in the cost function, we set λp = 100, whereas
λeq = 1 and λc = 1. Moreover, we whiten the noise at the
detector output before applying SPA to further improve BER.

First, consider an LDPC code of length 204. Fig. 2
shows that ALP maintains the same BER performance as
ULP. Moreover, we test an LDPC code of practical length, as
shown in Fig. 3. To be fair, we examine all results of different
methods after SPA. The proposed ULP outperforms DLP and
traditional ML receivers by 1dB and 2dB, respectively.

Next, we study the complexity reduction by ALP. We use
the commercial LP solver, MOSEK [22], to numerically eval-
uate the complexity in terms of the Floating-Point Operations
(FLOPS) that LP receiver algorithm uses. Consider Ps = 20
dB. Table 1 illustrates a substantial complexity reduction as
ALP can be several orders of magnitude faster than ULP.

6. CONCLUSIONS

This work presents a new unified detection-decoding receiver
formulation for DSTC relay networks. Unlike traditional dis-
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Table 1. FLOPS comparison of ULP and ALP
Code Length FLOPS of ULP FLOPS of ALP

204 1.33× 106 1.51× 105

504 9.50× 106 3.71× 105

1008 7.30× 107 7.41× 105

2640 8.28× 108 1.94× 106

joint or belief propagation receivers, we jointly utilize the fea-
ture of QAM signals, the available pilots, and LDPC code
constraints in an integrated linear programming receiver al-
gorithm. Our receiver manifests as a single constrained op-
timization formulation. We also reduce the algorithm com-
plexity to make it work for practically long LDPC codes. The
proposed LP shows good performance in our simulation tests.
Future works will address the generalization to higher-order
QAM and integration of other a priori signaling information.
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