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ABSTRACT

Sparse signal/image recovery is a challenging topic that has captured
a great interest during the last decades. To address the ill-posedness
of the related inverse problem, regularization is often essential by
using appropriate priors that promote the sparsity of the target sig-
nal/image. In this context, `0 + `1 regularization has been widely
investigated. In this paper, we introduce a new prior accounting si-
multaneously for both sparsity and smoothness of restored signals.
We use a Bernoulli-generalized Gauss-Laplace distribution to per-
form `0+`1+`2 regularization in a Bayesian framework. Our results
show the potential of the proposed approach especially in restoring
the non-zero coefficients of the signal/image of interest.

Index Terms— MCMC, sparsity, smoothness, hierarchical
Bayesian models, restoration

1. INTRODUCTION

Sparse signal and image restoration is an open issue and has been
the focus of numerous works during the last decades. More recently,
and due to the emergence of the compressed sensing theory [1],
sparse models have gained more interest. Indeed, recent applica-
tions generally produce large data sets that have the particularity
to be highly sparse in a transformed domain. Since these data are
generally modeled using ill-posed observation systems, regulariza-
tion is usually required to improve the quality of the reconstructed
signals/images through the use of appropriate prior information. A
natural way to promote sparsity is to penalize or constrain the `0
pseudo-norm of the reconstructed signal. Unfortunately, optimiz-
ing the resulting criterion is a combinatorial problem. Suboptimal
greedy algorithms, such as matching pursuit [2] or its orthogonal
counterpart [3] may provide reasonable solutions to this NP-hard
problem. However, despite recent advances which made the `0-
penalized problem feasible in a variational framework [4], fixing the
regularization hyperparameters is still an open issue. Conversely,
the solutions of the `0-penalized problem can coincide with those
of a `1-penalized problem [5] provided that appropriate sufficient
conditions are fulfilled. Based on this convex relaxation of the prob-
lem, an amount of works has been conducted to propose efficient
algorithms to solve `1-penalized problems (see for instance [6, 7]).
Again, choosing appropriate values for the hyperparameters asso-
ciated with the `1-penalized (or the `1-constrained) problems re-
mains a difficult task [8]. These hyperparameters can for instance
be estimated using empirical assessments, cross-validation or some
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external empirical Bayes approaches such as [9, 10]. In this con-
text, fully Bayesian approaches have demonstrated their flexibility
to overcome these issues. More specifically, Bernoulli-based mod-
els [11–14] have been proven to be efficient tools to build sparsity
promoting priors. Moreover, these Bayesian approaches allow the
target signal and the regularization hyperparameters to be jointly es-
timated directly from the data, avoiding a difficult and painful tuning
of these regularization hyperparameters.

In this paper, a hierarchical Bayesian model is proposed to en-
force a smoothness-sparsity constraint by using an `0 +`1 +`2 regu-
larization. At the first level of the model, a sparsity constraint is guar-
anteed by using a Bernoulli process, equivalent to an `0-penalization
which favors zeroes in the reconstructed signal. At the second level
of the model, the non-zero signal values are subject to a `1 + `2
penalization which allows both sparse (`1) and smooth (`2) parts
of the target signal to be recovered. The use of this twofold pe-
nalization has been for instance previously advocated in [15, 16]
and the resulting so-called “elastic net” model has demonstrated its
efficiency to perform smooth regularization and variable selection
jointly. In this paper, the `1 + `2 penalization is modeled within a
Bayesian framework using a generalized-Gauss-Laplace (GGL) dis-
tribution [15]. The resulting sparsity promoting prior consists of a
distribution mixture leading to a Bernoulli-GGL (BGGL) prior. To
the best of our knowledge, this is the first time that an `0 + `1 + `2
regularization model is fully developed. Such a regularization is still
an open issue in the variational regularization literature since the in-
herent cost function is not convex (see Section 2), and is thus not
easy to optimize with standard algorithms. Note that recent works
have addressed the `0 + `2 regularization [4, 17, 18] in a variational
framework. This variational regularization would be equivalent to its
Bayesian counterpart in which Bernoulli-Gaussian models are used
as priors [19].

Moreover, as for the variational formulation of the sparsity reg-
ularized problems, the quality of the Bayesian reconstruction dras-
tically depends on the values of the three hyperparameters associ-
ated with the penalizing terms `0, `1 and `2. In this paper, fol-
lowing the unsupervised approaches of [12,14], these hyperparame-
ters are included within the Bayesian model by assigning them non-
informative prior distributions. Finally, these hyperparameters and
the signal of interest are jointly estimated from the data in a fully
unsupervised framework.

This paper is organized as follows. Section 2 introduces the
`0 + `1 + `2 regularized problem we intend to solve. This prob-
lem is reformulated within a hierarchical Bayesian model detailed in
Section 3. Section 4 presents a Gibbs sampler which can be used to
generate samples asymptotically distributed according the posterior
of this Bayesian model and thus to compute Bayesian estimators of
the unknown model parameters. Finally, we validate the proposed
method in Section 5 before concluding in Section 6.
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2. HIERARCHICAL SPARSE REGULARIZATION

2.1. Problem formulation

In this paper we focus on real-valued digital signals of length M as
elements of the Euclidean space RM endowed with the usual scalar
product and norm denoted as 〈·|·〉 and ‖ · ‖, respectively. Let x ∈
RM be our target signal, which is measured by y ∈ RN through a
distortion linear operatorH. The resulting observation model can be
written

y = Hx+ n (1)

where n is an additive noise often considered as white Gaussian
with covariance matrix σ2

nIN . Since we generally have M � N ,
the inverse problem in Eq. (1) is ill-posed. In this situation, its di-
rect inversion yields distorted solutions presenting reconstruction ar-
tifacts that possibly interfere with the useful signal. This is the case
in a number of recent applications in the field of signal and image
processing, such as in parallel MRI [15, 20] and positron emission
tomography (PET) [21]. This paper focuses on such kind of prob-
lems where the target signal/image x is sparse. Consequently, we
propose here to adopt a sparse regularization strategy for estimat-
ing the unknown signal/image x. More precisely, the signal of in-
terest x is assumed to contain both zero and non-zero coefficients.
Moreover, the non-zero coefficients are decomposed into sparse and
smooth groups. Under these assumptions, we propose to investigate
an `0 +`1 +`2 regularization to tackle a hierarchical sparsity model.

2.2. Variational formulation

Performing an `0 + `1 + `2 regularization consists of solving the
following minimization problem

x̂ = arg min
x∈RM

1

σ2
n

||y−Hx||22+λ0||x||0+λ1||x||1+λ2||x||22 (2)

where λ0, λ1 and λ2 are regularization parameters that have to be es-
timated. In Eq. (2) || · ||0, || · ||1 and || · ||2 denote the `0 pseudo-norm
and the `1 and `2 norms, respectively. To the best of our knowl-
edge, mainly because the problem in Eq. (2) is not convex, it cannot
be solved using standard optimization algorithms. For this reason,
we propose to define a new hierarchical Bayesian model with ap-
propriate prior distributions allowing Eq. (2) to be solved in a fully
Bayesian framework.

3. BAYESIAN MODEL FOR HIERARCHICAL SPARSE
REGULARIZATION

In a Bayesian framework, y and x are assumed to be realizations of
random vectors Y and X . We then aim at characterizing the prob-
ability distribution of X|Y , by considering some parametric prob-
abilistic model and by estimating the associated parameters and hy-
perparameters. In the following, we derive the hierarchical Bayesian
model proposed for the sparse regularization problem of Eq. (2).

3.1. Likelihood

Under the assumption of additive white Gaussian noise of variance
σ2
n, the likelihood can be expressed as follows

f(y|x, σ2
n) =

(
1

2πσ2
n

)N/2
exp

(
− ||y −Hx||

2
2

2σ2
n

)
. (3)

3.2. Priors

Let us denote by θ = (x, σ2
n)T the unknown parameter vector to

be estimated. For the noise variance σ2
n, we use a non-informative

prior that guarantees the positivity of this parameter. More precisely,
σ2
n is assigned a Jeffreys’ prior distribution defined as (see [22] for

motivations)

f(σ2
n) ∝ 1

σ2
n

1R+(σ2
n) (4)

where 1R+(·) is the indicator function on R+, i.e., 1R+(ξ) = 1 if
ξ ∈ R+ and 0 otherwise.
In order to promote the sparsity of the target signal, one can choose a
Bernoulli-Gaussian (BG) [11, 23], a Bernoulli-exponential [12] (for
positive real-valued signals), or a Bernoulli-Laplace (BL) [14] prior
for every xi (i = 1, . . . ,M ). To promote hierarchical sparsity and
further distinguish smooth and sparse coefficients for the non-zero
part of the target signal, we use here a Bernoulli-Generalized Gauss-
Laplace (BGGL) distribution for every xi

f(xi|Φ) = (1− ω)δ(xi) + ωGGL(xi|α, β) (5)

with Φ = (ω, α, β)T is the vector of unknown hyperparameters and

GGL(xi|α, β) =

√
β
2π

erfc( α√
2β

)
exp

[
−
(
α|xi|+

β

2
x2i +

α2

2β

)]
(6)

where erfc(·) denotes the complementary error function

erfc(x) = 1− 2√
π

∫ x

0

e−t
2

dt.

In (5), δ(·) is the Dirac delta function and ω ∈ [0, 1] represents the
prior probability of having a non-zero signal component. We use a
generalized Gauss-Laplace (GGL) model as a prior for the non-zero
coefficients xi in order to account for both smoothness and sparsity
constraints for the xi’s. Using the BGGL model for x1, . . . , xm
and assuming these variables are a priori independent, the joint prior
distribution for the full signal vector x is

f(x|Φ) =

M∏
i=1

f(xi|Φ) (7)

=
M∏
i=1

{
(1− ω)δ(xi) + ωGGL(xi|α, β)

}
.

The resulting BGGL model consists of a two-level sparsity pro-
moting prior, and also accounts for possible smoothness properties
of the target signal. The first level of sparsity is guaranteed thanks to
the Bernoulli model and the Dirac delta function. The second level
of sparsity is ensured by the GGL distribution. This prior distribu-
tion generalizes several standard regularizations used in the statis-
tics and signal/image processing literatures. Indeed, for ω = 1, the
BGGL model is reduced to a GGL, which can be interpreted as the
Bayesian counterpart of the elastic net model introduced in [16] and
successfully used in [15] for parallel MRI reconstruction. Moreover,
for α = 0, the GGL distribution reduces to a Gaussian distribution,
inducing a standard smoothing `2-regularization, which results in a
Bernoulli-Gaussian prior for xi, for instance used in [11, 19, 23, 24].
Finally, for β = 0, the GGL distribution boils down to a Laplace
prior distribution, i.e., a sparsity inducing `1-regularization advo-
cated in [25] within a Bayesian framework. In this later case, the
prior for the signal component xi is a Bernoulli-Laplace process in-
troduced in [26] and successfully used in [14].
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3.3. Hyperparameter priors

In the variational formulation of the considered `0 + `1 + `2 regu-
larization in (2), the levels of the various penalizations are adjusted
via the hyperparameters λ0, λ1 and λ2 for a given noise variance
σ2
n. Choosing appropriate values for these regularization hyperpa-

rameters is a challenging issue that is usually addressed using em-
pirical approaches, e.g., cross-validation or subjective inspections of
multiple results. In the Bayesian formulation of the `0 + `1 + `2
regularization, similar roles are played by the hyperparameters ω, α
and β. It can be easily observed that the quality of the Bayesian re-
construction also drastically depends on these hyperparameters that
need to be properly chosen. In absence of additional prior knowl-
edge regarding the signal to be reconstructed (e.g., proportion and
mean of non-zero signal components), these hyperparameters can be
included within the Bayesian model by assigning them prior distri-
butions. Consequently, these hyperparameters can be directly esti-
mated from the data, in a fully unsupervised framework. It is the
strategy considered in this paper and the hyperparameter prior dis-
tributions are detailed below.

Individual non-informative priors are used for the hyperparame-
ters ω, α and β which are assumed to be a priori independent. First,
to reflect the absence of prior knowledge regarding the proportion of
non-zero signal components, a uniform distribution on the simplex
[0, 1] can be used for ω, i.e., ω ∼ U[0,1]. Since the parameters α
and β are real-positive, a commonly used prior in this situation is a
conjugate inverse-gamma (IG) distribution IG(α|a, b) defined as

IG(α|a, b) =
ba

Γ(a)
α−a−1 exp

(
− b
α

)
(8)

where Γ(·) is the gamma function, and a and b are hyperparameters
to be fixed to obtain vague hyper-priors (in the experiments reported
in Section 5, these hyperparameters have been set to a = b = 10−3

both for α and β).

4. RESOLUTION SCHEME

Using a maximum a posteriori (MAP) strategy, the model parameter
vector θ = (x, σ2

n)T is estimated based on the likelihood f(y|θ),
the priors f(θ|Φ) and hyperpriors f(Φ) introduced in the previous
section. According to the Bayes’ paradigm, the joint posterior dis-
tribution of {θ,Φ} can be expressed as

f(θ,Φ|y) ∝ f(y|θ)f(θ|Φ)f(Φ) (9)

∝ f(y|x, σ2
n)f(x|ω, α, β)f(σ2

n)f(ω|x)f(β|x)f(α|x).

We propose here to resort to a Gibbs sampler [22] that iteratively
samples according to the conditional posteriors f(x|y, ω, α, β, σ2

n),
f(σ2

n|y,x), f(ω|x), f(α|x) and f(β|x). Calculations similar
to [12, 14] show that the posteriors for σ2

n and ω are simply inverse
gamma and beta distributions, respectively

σ2
n|x,y ∼ IG

(
σ2
n|N/2, ||y −Hx||2/2

)
ω ∼ B(1 + ||x||0, 1 +M − ||x||0). (10)

Unfortunately, no closed-form expression can be obtained fort the
conditional distributions of α|x, ω, β and β|x, ω, α. Metropolis-
Hastings moves with positively truncated Gaussian proposals are
therefore used to sample according to f(β|x, ω, α) = f(β|x) and
f(α|x, ω, β) = f(α|x).

The distribution of xi conditionally to the rest of the signal x−i
and the other model parameters is easy to be derived. Straightfor-
ward computations lead to the following result

f(xi|y,x−i, ω, α, β) =ω1,iδ(xi) + ω2,iN+(µ+
i , σ

2
i ) (11)

+ ω3,iN−(µ−i , σ
2
i )

where N+ and N− denote the truncated Gaussian distribution on
R+ and R−, respectively. Akin to [12, 14], we first decompose x
on the orthonormal basis B = {e1, . . . , eM} such that x = x̃−i +
xiei, where x̃−i is the signal vector x whose ith element is set to 0.
Denoting vi = y −Hx−i and hi = Hei, the weights (ωl,i)1≤l≤3

are given by
ωl,i =

ul,i
3∑
l=1

ul,i

(12)

where u1,i = 1− ω

u2,i = ω

√
β
2π
e
−α

2

2β
+
µ
+
i

2

2σ2
i

erfc( α√
2β

)

√
2πσ2

iC(µi+, σ
2
i )

u3,i = ω

√
β
2π
e
−α

2

2β
+
µ
−
i

2

2σ2
i

erfc( α√
2β

)

√
2πσ2

iC(µi−, σ
2
i ) (13)

and σ2
i =

σ2
n

||hi||2 + βσ2
n

µi+ = σ2
i

(
hT
ivi
σ2
n

− α
)
,

µi− = σ2
i

(
hT
ivi
σ2
n

+ α

)
C(µ, σ2) =

√
σ2π

2

[
1 + erf

( µ

2σ2

)]
. (14)

The resulting sampler is summarized in Algorithm 1. After con-
vergence, Algorithm 1 provides samples that are asymptotically dis-
tributed according to the full posterior of interest. These samples can
be used to compute a MAP estimator in order to get x̂, as in [24].
Moreover, the proposed algorithm also allows σ̂2

n, α̂, β̂ and ω̂ to be
computed.

Algorithm 1 Gibbs sampler.

Initialize with some x(0).
repeat

Sample σ2
n according to f(σ2

n|y,x).
Sample α according to f(α|x, a, b).
Sample β according to f(β|x, a, b).
Sample ω according to f(ω|x).
for i = 1 to M do

Sample xi according to Eq. (11).
end for

until convergence

5. EXPERIMENTAL VALIDATION

The conducted experiment addresses a 1D signal recovery problem
based on realistic simulated data. A sparse signal x of size 100 is
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recovered from its distorted observation y according to the obser-
vation model in Eq. (1). Distortion is due to the application of the
second order difference operator (H) in addition to a white Gaussian
noise of variance σ2

n = 0.5. The results are compared to other reg-
ularization techniques based on visual inspections as well as output
signal-to-noise ratios given by

SNR = 20 log10

||x0||
||x0 − x̂||

wherex0 and x̂ are the reference and estimated signals, respectively.
For the sake of comparison, the sparse regularization scheme (BL)
of [14] is applied in addition to the proposed method (BGGL). More-
over, results using the orthogonal matching pursuit (OMP) algorithm
are also provided. Fig. 1 illustrates the ground truth and the recon-
structed signals using the BL and BGGL models, in addition to the
OMP algorithm. Visual inspection of restored signals show very
similar performance for the BL and BGGL models. Indeed, these
two methods recover an accurate sparsity support (non-zero coeffi-
cients): ||x̂BL||0 = ||x̂BGGL||0 = 29 and ||x0||0 = 28. As regards
OMP restoration, visual inspection show that non-zero coefficients
are not well recovered even if the sparsity support is quite accurately
recovered (||x̂OMP||0 = 24).

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

 

 

BGGL

BL

OMP

Ground truth

Fig. 1. Original and restored signals using the proposed method (BGGL)
and BL regularization in [14].

To quantitatively assess the reconstruction quality, output SNR
are computed for the `1- and `0 + `1 + `2-regularized restoration
methods: SNRBGGL = 25.61 dB and SNRBL = 24.56 dB. Since
the two methods recover the same sparsity support, this performance
gain is due to a better estimation of the non-zero coefficients with
the proposed method. Indeed, the flexibility of the GGL distribution
allows us to better model both sparsity and smoothness of non-zero
coefficients, leading to better restoration results.

Moreover, since the proposed Gibbs algorithm generates sam-
ples asymptotically distributed according to the joint posterior dis-
tribution (9), the conditional posterior distributions for the noise
variance σ2

n and the regularization hyperparameters ω, α and β can
also be estimated. These estimated posteriors are depicted in Fig. 2
and the estimated parameters are reported below each plot.

To further assess the restoration performance of the proposed
method, 50 Monte Carlo simulations have been conducted with dif-
ferent acquisition noise levels (σ2

n ∈ {0.5, 1, 1.5, 2, 2.5, 3}). The
average SNR values computed using the 50 Monte Carlo runs are
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α̂ = 0.026 β̂ = 0.027
Fig. 2. Estimated posterior distributions of parameters σ2

n, ω, α and β.

depicted in Fig. 3 for all noise levels. The observed SNR values
confirm the ability of the proposed BGGL model to better restore
non-zero signal coefficients. Fig. 3 also shows that the proposed
method may be more efficient at high noise levels. As expected,
OMP gives lower performance compared to the two other methods.
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σ2
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Fig. 3. Output SNR w.r.t. input noise variance σ2
n. Mean values are calcu-

lated based on 50 Monte Carlo simulations for every noise level.

6. CONCLUSION

In this contribution, we proposed a new method for hierarchical
sparse-smooth regularization involving `0+`1+`2 penalization. The
proposed method relied on a hierarchical Bayesian model with ap-
propriate priors for the model parameters and hyperparameters, the
latter being automatically estimated from the data. Promising results
showed the potential of the proposed approach. Future work will in-
vestigate the application of this method to real magnetic resonance
imaging (MRI) and electroencephalography (EEG) signal recovery.
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