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Abstract—In this paper sequential detection problems are
treated in the context of cognitive biases. We present a general
bias model and we design a generalized sequential probability
ratio test (GSPRT) to mitigate the bias impact following a
composite hypothesis testing approach. We also derive an optimal
ordering of the incoming observations for fast detection defined
in terms of the average sample number (ASN) of observations.
We verify through numerical analysis that the designed detector
fulfills the time and accuracy requirements. Results show that its
performance emulates that of a Bayesian detector optimized for
fast sequential detection in absence of biases.

Index — Cognitive biases, Ordering, Mitigation, GSPRT,
Bayesian testing

I. INTRODUCTION

Bayesian inference stands as a model for drawing conclu-
sions based on observing data in the sense that it maximizes
the odds of the detected hypothesis from a probabilistic point
of view. When it comes to sequential hypothesis testing then
the newly coming observations serve to update the level
of confidence for decision making on the valid hypothesis.
The more observations are made, the less the probability
of detecting the wrong hypothesis is. However, when fast
detection is desired a trade-off arises between the level of
confidence for choosing a hypothesis and the timing constraint.
Capturing the optimal balance between the two objectives has
gained notable attention in the literature. Yet less attention was
paid to perform that taking into account the cognitive biases a
human might have when building knowledge of observed data
and drawing out conclusions.
The sequential probability ratio test is the optimal binary
sequential hypothesis test when the observed data is i.i.d [1].
At every incoming observation a metric is updated and eval-
uated with respect to fixed thresholds to either decide on
some hypothesis or take a new observation. The thresholds
are explicit functions of the prescribed probabilities of errors.
Optimality of SPRT is extended in [2] to correlated and non-
homogeneous processes and statisical problems with nuisance
parameters. Still, for non-stationary independent observations
it is proved in [3] that time-varying thresholds are optimal over
fixed thresholds though there is no standard way to define this
variation. For example, in [4] the thresholds are constructed
so that the probability of a false alarm and a miss are upper
bounded at every iteration of the sequential test, and then
the ASN is minimized by arranging the incoming data in the
non-decreasing order of the Kullback Leibler (KL) divergence.
The idea of presenting significant information at the start of
the sequential test is also utilized but in a different context
in [5]. Data is preprocessed using short/medium fast Fourier
transforms (FFTs) and the FFT outputs are sorted so that the
samples in which the signal energy is mostly concentrated
enter the sequential test first.
Accommodating human cognitive biases in Bayesian inference

has been considered in a different realm than sequential hy-
pothesis testing. Cognitive biases refer to the well documented
tendency of humans to deviate from good judgment. Such
biases have been confirmed by reproducible research and result
from a number of factors including information that humans
are exposed to prior to making a given decision. They can lead
to systematic deviations from unbiased and rational decision-
making. In [6] they try to produce an optimal time-accuracy
trade-off as a function of the number of iterations needed to
estimate a random quantity. A cost function is defined for
both the estimation error and the number of observations and
the bias is quantified by the time cost and error cost at the
stage of yielding the estimate. The bias is thus attributed to
the rationality in utilizing the finite resources of the brain
when tackling an inference problem and trying to optimize
the utility function that involves the time requirement. In [7]
and [8] the starting point bias is treated in a willingness to pay
(WTP) estimation setup. Successive bid values are introduced
by the interviewer and the anchoring effect is modeled as the
impact of the initial bid value on the posterior WTP. The yea-
saying bias is also addressed in [8] where the data distribution
is adjusted by an additive half-normal random variable that
compensates for the interviewee’s willingness to accept higher
bid values.
In this paper we treat the sequential hypothesis testing prob-
lem when cognitive biases affect the decision making while
keeping the ASN of observations and probability of error at
a minimum. In Section II we motivate the problem through a
case study and formalize its statement. In Section III we design
a GSPRT detector to meet the problem requirements. The
performance of the detector is evaluated through numerical
analysis in Section IV. Section V concludes the paper.

II. PROBLEM STATEMENT

In this section, we will study the problem of interviewing
a candidate for a given position as an example of sequential
detection problems with cognitive biases. An interviewee is
asked a series of questions and the grade evaluation for
each answer is modeled as a Gaussian random variable of
mean representing the average knowledge of the interviewee
about the subject and variance characteristic of the fluctuation
of the interviewee’s ability to express that knowledge. We
will assume that only two outcomes are possible. Either the
interviewee exceeds expectations and is offered a job or the
interviewee fails to meet expectations. The questions are of
different importance so they are weighted differently. We can
always deduct the average grade for a particular question
from the ”observed” grade given any hypothesis, and thus the
observations can be reformed as follows:

H0 : Yn = Wn,∀n ≥ 1
H1 : Yn = mn +Wn,∀n ≥ 1

(1)
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where Wn ∼ N(0, σ2) are iid and mn is the difference in the
means of the nth evaluation under the two hypotheses.
The interviewer has to decide which hypothesis is true. This
is a sequential detection problem. With ln being the log-
likelihood ratio for observation Yn, and Ln being the cumu-
lative log-likelihood ratio up to observation Yn, then

Ln = log

(
n∏
i=1

fi(Yi|H1)

fi(Yi|H0)

)
=

n∑
i=1

log

(
fi(Yi|H1)

fi(Yi|H0)

)
=

n∑
i=1

li

(2)
and li =

2miYi−m2
i

2σ2 . Ln is compared to thresholds an and
bn. We assume here that an and bn are absolute thresholds.
These thresholds will be modified by the cognitive biases of
the interviewer. We will model the cognitive bias modification
by a data dependent correction factor ∆n. We will develop
a model for ∆n below. As in regular sequential detection
problems, when Ln > bn H1 is assumed true, the interviewee
is qualified and the test terminates. When Ln < an H0 is
assumed true, the test terminates and the interviewee is dis-
qualified. When an ≤ Ln ≤ bn is true an additional question
should be directed to the interviewee.
Given a prescribed probability of false alarm Pf and proba-
bility of a miss Pm, it is required to design an and bn so that
P

(n)
f = P (a1 < L1 < b1, ..., an−1 < Ln−1 < bn−1, Ln ≥
bn|H0) ≤ Pf and P

(n)
m = P (a1 < L1 < b1, ..., an−1 <

Ln−1 < bn−1, Ln ≤ bn|H1) ≤ Pm at stage n. This should
accommodate the fact that the interviewer may be biased
by the last n − 1 answers of the interviewee. In addition,
questions should be ordered for the fastest detection of the
correct hypothesis.

III. SEQUENTIAL TEST DESIGN
In this section we design a general sequential probability

ratio test to detect the correct hypothesis in the problem
statement under the constraints ot time and accuracy and in the
presence of data-dependent bias. The test design is split into
three stages: the computation of the thresholds, the validation
of the convergence test conditions and the ordering of the
observations.

A. Computation of the GSPRT Thresholds
Assume that the interviewer is subject to some bias, then

given the same distribution of observations Yn, the interviewer
perturbs thresholds an and bn and then decides on what
hypothesis is true or whether to ask another question by
comparing Ln to the new thresholds. Since the interviewer’s
tendency to qualify the interviewee is consistent with the
tendency not to reject the interviewee and vice-versa, then
an and bn are perturbed by the same quantity ∆n. Denote
by g(Li|H0) and g(Li|H1) the distributions of Ln under hy-
potheses H0 and H1 respectively. Then we have the following:

P
(n)
f ≤ pf (n) =

∫ ∞
bn−∆n

g(Li|H0)dLi (3)

P (n)
m ≤ pm(n) =

∫ an−∆n

−∞
g(Li|H1)dLi (4)

We note that any variation in the distribution of Ln can be
captured by assigning to ∆n an adequate random distribution.

Therefore we can assume that g(Ln|H0) and g(Ln|H1) are
given by the respective distributions N

(
−
∑n
i=1 m

2
i

2σ2 ,
∑n
i=1 m

2
i

σ2

)
and N

(∑n
i=1 m

2
i

2σ2 ,
∑n
i=1 m

2
i

σ2

)
in the presence of a bias. Plug-

ging the corresponding expressions in (3) and (4) we get

pf (n) =
σ√

2π
∑n
i=1m

2
i

∫ ∞
bn

e

−

(
x−∆n+

∑n
i=1 m

2
i

2σ2

)2

2×
∑n
i=1

m2
i

σ2 dx (5)

pm(n) =
σ√

2π
∑n
i=1m

2
i

∫ an

−∞
e

−

(
x−∆n−

∑n
i=1 m

2
i

2σ2

)2

2×
∑n
i=1

m2
i

σ2 dx (6)

Letting ∆n denote the cumulative data-dependent bias at
observation n, we suggest the following bias model:

∆n =

n−1∑
i=1

αin

(
li −

m2
i

2σ2
+
mithi
σ2

)
=

n−1∑
i=1

αinmi(Yi + thi −mi)

σ2

(7)
This model is fully characterized by αin and thi, 1 ≤ i < n.
In particular, ∆n is chosen as a linear combination of the Yis
in the αin terms, thus mimicking the anchoring bias modeling
in [7] and [8]. On the other hand, the thi terms model the
shift in the interviewer’s attitude and thus generalize the yea-
saying model in [8]. To see this, we first assume without loss
of generality that αin ≥ 0. Notice that when the equality holds
the bias is absent. The evaluation of the ith answer positively
impacts the evaluation of the nth answer when the former
exceeds the threshold mark mi − thi. A fair value of thi is
zero. Positive thi improves the evaluation in later observations
while negative thi establishes a negative future attitude from
the interviewer. The larger αin is then the more the bias impact
stands out. Therefore thi is a shifting factor while αin is a
scaling factor.
Denote by µLn the mean of Ln in presence of ∆n, then

H0 : µLn ∼ N

(
n−1∑
i=1

αinmi(thi −mi)

σ2
−
∑n
i=1m

2
i

2σ2
,

n−1∑
i=1

α2
inm

2
i

σ2

)

H1 : µLn ∼ N

(
n−1∑
i=1

αinmithi
σ2

+

∑n
i=1m

2
i

2σ2
,

n−1∑
i=1

α2
inm

2
i

σ2

)
(8)

The transformed problem defined by importing ∆n into the
mean of Ln falls under composite hypothesis testing [9]. Given
that µLn has a prior distribution, we proceed by replacing it
in the distribution of Ln by its Bayesian least square (BLS)
estimate.
Consider a linear combination of the Gaussian random vari-
ables µLn and Ln. It is a Gaussian random variable and
therefore µLn and Ln are jointly Gaussian. We derive the
BLS estimate of µLn based on observing Ln and consequently
Yi ∀ 1 ≤ i ≤ n. For the jointly Gaussian case, the BLS
estimate is a linear least square (LLS) estimate.
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Deducting from µLn and Ln their respective means we get

H0 : µLn − µ̄Ln =

n−1∑
i=1

αinmiYi
σ2

H1 : µLn − µ̄Ln =

n−1∑
i=1

αinmi(Yi −mi)

σ2

(9)

and

H0 : Ln − L̄n =

n∑
i=1

miYi
σ2

H1 : Ln − L̄n =

n∑
i=1

mi(Yi −mi)

σ2

(10)

Under both hypothesis the covariance terms are

ΛµLn ,Ln = E
[
(µLn − µ̄Ln)(Ln − L̄n)

]
=

n−1∑
i=1

αinm
2
i

σ2

(11)
and

ΛLn = E
[
(Ln − L̄n)2

]
=

n∑
i=1

m2
i

σ2
(12)

The BLS estimate µ̂Ln(Y ) = µ̄Ln + ΛµLn ,LnΛ−1
Ln

(Y − µY )
of µLn becomes

H0 : µ̂Ln(Y ) =

n−1∑
i=1

αinmi(thi −mi)

σ2
−
∑n
i=1m

2
i

2σ2

+

∑n−1
i=1 αinm

2
i∑n

i=1m
2
i

×
∑n
i=1miYi
σ2

H1 : µ̂Ln(Y ) =

n−1∑
i=1

αinmithi
σ2

+

∑n
i=1m

2
i

2σ2

+

∑n−1
i=1 αinm

2
i∑n

i=1m
2
i

×
∑n
i=1mi(Yi −mi)

σ2

(13)
Replace the means of the integrated pdfs in (5) and (6) by
their estimates in (13). Following the same approach as in [4]
we set pf (n) and pm(n) to the prescribed probabilities Pf
and Pm and solve for the thresholds at the boundary of the
integration. We obtain

bn = max

(
Q−1(Pf )

√∑n
i=1m

2
i

σ
−
∑n
i=1m

2
i

2σ2

+

∑n−1
i=1 αinm

2
i∑n

i=1m
2
i

×
∑n
i=1miYi
σ2

+

n−1∑
i=1

αinmi(thi −mi)

σ2
, 0

)
(14)

and

an = min

(
Q−1(1− Pm)

√∑n
i=1m

2
i

σ
+

∑n
i=1m

2
i

2σ2

+

∑n−1
i=1 αinm

2
i∑n

i=1m
2
i

×
∑n
i=1mi(Yi −mi)

σ2
+

n−1∑
i=1

αinmithi
σ2

, 0

)
(15)

where Q is the standard Q-function. The comparison to zero
allows us to make sure that an < 0 < bn so that the
sequential test is valid. From (5) and (6), pf (n) and pm(n)

are upper bounds of P (n)
f and P

(n)
m and therefore at any

stage of observations the probabilities of a false alarm and
a miss are always below the prescribed values for Pf and Pm
respectively.

B. Conditions for Convergence
In order to have a finite number of observations before the

test terminates, we need P̃n = P (an < Ln < bn|H1)→ 0 as
n tends to ∞. Using the above expressions of an and bn we
have

P̃n = P

(
an − µ̂Ln|H1

var(Ln)
<
Ln − µ̂Ln|H1

var(Ln)
<
bn − µ̂Ln|H1

var(Ln)
|H1

)
= 1− Pm −Q

(
Q−1(Pf ) + µ̂Ln|H0

− µ̂Ln|H1

var(Ln)

)
(16)

Setting P̃n to zero we obtain

Q−1(Pf )−Q−1(1− Pm)−
√∑n

i=1m
2
i

σ
= ε (17)

where ε > 0. This is only valid for an energy sequence of
observations: limn→∞

∑n
i=1m

2
i < ∞. Interestingly, by (17)

convergence conditions are independent of any bias term.

C. Ordering of the Observations
We desire an ordering of observations for a fast hypothesis

detection within prescribed error bounds. Note the following:

E[µ̂Ln|H1 − µ̂Ln|H0
] =

∑n
i=1m

2
i

σ2
+

∑n−1
i=1 αinm

2
i

σ2
(18)

The expected mean difference between the 2 hypotheses thus
depends on αin but not thi. Inspecting (7) αin affects the
variance of Yi while thi affects its mean. Since all observations
have the same variance then the bias will not vary the order
of KL divergence and from [4] fastest detection is ensured by
sorting the observations in the decreasing order of their means.

IV. RESULTS AND ANALYSIS
In this section we validate the various design stages of the

GSPRT detector. The sequence mi is an exponential decay
with ratio r = 0.96 and m1 = 1. Pf = Pm = 10−3 and
σ2 = 0.4 in order to satisfy (17).
We choose two bias schemes. For both schemes αin >
0, 1 ≤ i ≤ n − 1 so that the bias, if it exists, increases
with the better performance of the interviewee. Moreover, we
choose

∑n−1
i=1 αin < 1 so that by (18) the bias contributes

to the evaluation of the nth answer by less than what the
nth answer itself does. In the first scheme, referred to as
the first impression scheme, αin = 6

π2
1
i2 β. The intuition is

that the first answers are weighted with higher α-values and
thus the more fit is the first set of answers, the higher the
evaluation the interviewee receives throughout the interview.
In the second scheme, referred to as the short-term memory
scheme, αin = 6

π2
1

(n−i)2 β. In this case it is mainly the
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interviewee’s last previous set of answers that could bias the
evaluation of the current answer since it is associated with
high α-weights. For both schemes, β is a scaling factor that
increases with the bias, 0 ≤ β < 1 and 6

π2 is a normalization
factor.
We test the detector under H1. Since the potential error under
this hypothesis is a miss, we let thi = −mi2 < 0 so that
from (7) the interviewer is picky in the evaluation.

Fig. 1. Sample mean thresholds for the GSPRT in presence of bias under H1
and H0.

In figure 1 thresholds an and bn are presented for the short-
term memory scheme. Since they are data-dependent, we only
show their expected values for both H1 and H0. The solid
lines are for H1 and the dashed lines are for H0. Since under
H1 the observations have a higher mean, the solid lines lie
above the dashed lines. At the test start, less information is
available and the thresholds bulge out. By (17) an and bn
converge to their limits in a finite time and are independent of
the valid hypothesis. The asymmetry of the thresholds for both
H1 and H0 is an indicator of a present bias. For αin > 0, an
and bn decrease when thi decreases to counteract the negative
attitude of the interviewer and vice-versa.

Fig. 2. Probability of a miss for different biases and bias treatments.

In figure 2 we check the validity of setting the mean of
Ln to its BLS estimate for correct hypothesis testing in
the presence of a bias. Results are presented for the two
bias schemes. Observations are sequenced in the decreasing
order of their means and an upper estimate dPnme of Pnm is

obtained by running the GSPRT over the input samples for
10000 iterations. Note that an exact evaluation of Pnm through
simulations is tedious since the test terminates at an arbitrary
stage n. For each scheme we evaluate (14) and (15) for two
cases: once we plug for the αi terms their values characteristic
of each bias, and once we plug zeros. In the latter case we
aim at checking how the detector performs when the bias is
neglected. We then repeat the tests for different values of
β. Noticeably, no matter how β grows below unity, dPnme
remains close to the prescribed value Pm = 10−3 for both
schemes. This is not true when the bias is not treated and
dPnme grows monotonically. The error growth for the short-
term memory scheme overwhelms that of the first impression
scheme where the α-weights are higher for the first incoming
data samples. Their high means facilitate the detection of H1

and the corresponding error growth remains limited.

Fig. 3. Average sample number for the GSPRT for different orderings of the
observations.

The optimal ordering of the observations is suggested in
figure 3. Define the p-reverse ordering as the arrangement of
the observations in decreasing order of their means followed
by reversing the first p samples.The ASN is plotted against
different p-reverse orderings. The ASN increases with p for
the no-bias scheme and the two bias schemes and thus the
1-reverse ordering is optimal. The first impression scheme
represents a scenario where the bias serves to terminate the
GSPRT faster and with the correct conclusion under H1

when the optimal ordering is adopted. This is because the
higher means are weighted more in the bias. The short-term
memory scheme represents a scenario where the bias serves
to terminate the GSPRT slower under H1 when the optimal
ordering is adopted. This is because the low-mean observations
are more emphasized in the bias. The reduced gap in ASN in
the presence and absence of bias points out the optimality of
the bias treatment given that all αin and thi terms are known
at the design stage of the detector.

V. CONCLUSION
In this paper we presented the design of a sequential

hypothesis testing problem where cognitive biases are involved
in the decision process. The problem was transformed into
composite hypothesis testing where a generalized model was
employed to to capture the impact of the biases on the decision
thresholds. Sorting the observations in the decreasing order of
their means was suggested for fast detection, and numerical
analysis validated the test design for both accuracy and speed.
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