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ABSTRACT

Recently, a Bayesian estimator with a hybrid update was developed
[1], based on a mathematical formulation of sampling. Such an
Event Based State Estimator (EBSE) allows for a stable synchronous
state estimate, relying on asynchronous measurements. Usefulness
of such a filter comes with its approximate analytic formulation,
which is attainable given a send-on-delta sampling strategy. We ar-
gue that such a formulation can be extended to cope with a failing
detector in case the filter is used for tracking. The basic idea is to
approach the issue as a package loss problem, where a missed target
is assimilated to a lost package. More in detail, we propose that this
approach can be exploited in video tracking, where faulty detectors
are commonplace. We show how tracking performance with a poor
pedestrian detector, failing to recognize its target, can improve with
respect to standard Kalman filter.

Index Terms— Bayesian filtering, EBSE, Hybrid update, Pack-
age loss, Sparse measurements, Failing detector

1. INTRODUCTION

A stable event-based Bayesian state estimator was developed in [1],
based on a mathematical formulation of sampling. Such an estimator
implements a hybrid update, which allows for a synchronous esti-
mate, while relying on asynchronous measurement events. Stability
is obtained by updating the estimation results not only when a new
measurement (event) is available, but also synchronously in time, i.e.
when no measurement is received. At synchronous time instants, the
update is based on the implicit information still available even when
not receiving a new measurement. The simple, yet effective idea of
updating the EBSE at its synchronous time instants, by exploiting a
bounded measurement set, turns out to be sufficient for the deriva-
tion of an asymptotic bound on its error-covariance, regardless of the
sampling strategy employed for defining events.

Most currently available analyses are limited to synchronous es-
timators, such as the Kalman filter (KF) [2] and its non-linear and
non-Gaussian variations. An extension to package loss is provided
by Sinopoli et al. in [3]. Here the (discrete) arrival of the observa-
tions is modelled as a random process whose parameters are related
to the characteristics of an unreliable communication channel. The
statistical convergence of the expected estimation error covariance of
the filter is proved to be dependent on the probability of arrival of the
package λ, given a system dynamic. The threshold λc, below which
the expectation of the estimation error covariance is unbounded, is
worked out in closed form. The authors also claim that this result
can be interpreted as a manifestation of the uncertainty threshold
principle.

Later on, Suh et al. proposed in 2006 a state estimation algo-
rithm [4] which incorporates a send-on-delta strategy [5] (Figure
1(a)) in the discrete KF, to reduce data traffic in networks. Such
a strategy copes with a sensor whose data are transmitted only if
its output changes more than some value ∆. At synchronous time
instants, no acquisition of sensor data implies that such a threshold
is not exceeded. Yet, this information allows to increase estimation
performance by reducing estimation errors. The method was later
improved in [6]. Noticeably, the results developed in [1] trivially
apply to this method, which turns out to be a particular case of the
EBSE with a send-on-delta event sampling strategy and a rougher
approximation in the formulation of the likelihood, as pointed out in
[7].

We argue that the issue of state estimation relying on a failing
detector is equivalent to the modelling of a virtual channel with
package loss, and can be therefore approached by means of an
EBSE-based filter. Here the event is represented by the detection, as
it takes place. However, the EBSE has a very general formulation,
which on the one hand allows to work out general results (such as its
stability), which hold regardless of the sampling strategy adopted;
on the other hand one is forced to choose a sampling method in
order to get a practical tool to be applied in real applications. Un-
fortunately, not every sampling strategy allows for a straightforward
analytical formulation of the EBSE. For instance, Integral Sampling
(Figure 1(b)) does not allow a computation of the bounded measure-
ment set requested for the likelihood formulation. In order to obtain
an applicable tool, we rely on the analytical formulation obtained in
[7] for the send-on-delta EBSE. We show how this can be applied
to the problem of video tracking with failing detectors by making
the correct assumptions. In particular we show results for a HOG-
descriptor-based pedestrian detector [8], which can fail to recognize
human targets in heterogeneous sets of frames. In particular, we
show how tracking performance with a poor pedestrian detector,
failing to identify its target, can improve with respect to the standard
KF, even by relaxing some of the assumption done for the EBSE. In
this sense, we deal with sparse observations.

The rest of this work is organized as follows: section 2 briefly
explains the EBSE filter and its extension to a failing detector frame-
work with a send-on-delta sampling strategy. Section 3 describes
the experimental setup and discuss results. Conclusions and final
remarks are given in section 4.

2. EBSE

A comprehensive mathematical formulation of the EBSE is given in
[7], together with the demonstration of its stability. We here only
state the problem and briefly sketch those parts of the method which
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(a) Send-on-Delta Sampling (b) Integral Sampling

Fig. 1. The k-th event instant is triggered by the condition |y(t) −
y(tk−1)| ≥ ∆ for the send-on-delta sampling strategy and by the
condition

∫ t

tk−1
|y(τ)− y(tk−1)|dτ ≥ ∆ for integral sampling [7].

are essential for the understanding of what will be presented in the
following.

Event based state estimation deals with a sensor node exchang-
ing measurements with a centralized state estimator. Measurements
are exchanged only at instants which correspond to some events
(i.e. asynchronously). However, estimations are often required syn-
chronously in time (i.e at each tk).

Consider the time-discrete process

xk = Axk−1 +Buk−1 + wk−1 (1)
yk = Cxk +Duk + vk, (2)

where the random variables wk−1 and vk are the process and mea-
surement noise respectively. The classical Bayesian estimator aims
at computing the density p(xk|Yk) by first predicting the a priori
pdf

p(xk|Yk−1) =

+∞∫
−∞

p(xk|xk−1)p(xk−1|Yk−1)dxk−1,

where Yk = {y0, y1...yk},

(3)

by exploiting the knowledge on the system process p(xk|xk−1) (in-
herent in eq. 1) and on the last estimation. The estimation is then
updated with the new measure at time step k

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
. (4)

The problem has very well known solutions, such as the already
mentioned KF (in the case of linearity of equations 1 and 2 and
Gaussian noise) and its many extensions for non-linear equations
and non-Gaussian noise (Extended KF, Unscented KF, Cubature Fil-
ter [9], Particle Filter [10]).

The solution to the problem of how to synchronously perform
the update (eq. 4) when the sensor node does not send any mea-
sure relies on what can be interpreted as an extension of the concept
of ”measure”. One can think of a measure as of new information
coming into the system, in order to compute eq. 4. Such incoming
knowledge can either be the actual measurement y(t) or some less
informative data such as the bounded setH[e|t] of all allowable val-
ues that y(t) may take at time t (after the last measure y(te−1): this
will be explained more in details in section 2.1):

Yk :=

{H[e|t] No measurement;

y(te) Measurement event.
(5)

From here, a unified update equation can be worked out based on the
expression of the likelihood

p(Yk|xk) =

∫
p(yk|xk)p(yk ∈ Yk)dyk (6)

where it is reasonable to conjecture that

p(yk ∈ Yk) :=

{
ΠH[e|tk] No measurement;

δ(yk − y(te)) Measurement event;
(7)

where ΠH is the uniform distribution over H and δ(y) is the Dirac
delta.

From now on, we will give a slightly different formulation of the
EBSE, based on switching variables. A comprehensive theoretical
dissertation on switching Bayesian models is given in [11], together
with an example. By introducing the binary variable α = 0, 1, eq. 6
can be rewritten in a clearer way as

p(Yk|xk, α) =

∫
p(yk|xk) [α δ(yk − y(te))

+ (1− α)ΠH[e|tk] ] dyk,

(8)

where α = 0 if no new measurement comes from the sensor node
and α = 1 if, on the opposite, a new measure is triggered. The
switching variable α is known at each synchronous instant tk, as we
of course are aware of whether the detection takes place or not.

In order to have a consistent formulation which holds regard-
less of the event sampling strategy, ΠH is approximated with a sum-
mation an arbitrary number of equally spaced Gaussians with the
same covariance [12]. After the state pdf p(xk|Yk[0, k]) is even-
tually computed, its single-Gaussian approximation is also worked
out, in order to attain computational tractability and make it possible
to investigate the asymptotic behaviour of the filter.

2.1. Sampling

Triggering a sample (event) can be based either on time t ∈ R or
on measurement values y(t) ∈ Rn. Indeed, the formulation of sam-
pling is grounded on the set H[e] ⊆ Rn+1 of all allowable values
that (y(t), t) may take after the last measurement y(te−1) and before
the next y(te). The event instant te is generated by

te := inf

{
t ∈ R+ | t > te−1 ∧

(
y(t)
t

)
/∈ H[e].

}
(9)

With this definition, the previously introduced H[e|t] can be ob-
tained by a more rigorous description

H[e|t] :=

{
y ∈ Rn |

(
y
t

)
∈ H[e]

}
(10)

One of the key points of the EBSE algorithm lies in eq. 7 and con-
sists in working out the (approximated) uniform distribution over
H[e|t]. It is therefore essential to construct such a set for an opera-
tive implementation of the filter. Choosing a sampling strategy es-
sentially definesH[e] and thusH[e|t] ∀t ∈ (te−1, te). For example,
for a send-on-delta case (Figure 1(a)),H[e|t] is nothing but the inter-
val (y(te−1)−∆, y(te−1) + ∆) for each t in the interval (te−1, te),
as it can also be easily guessed by the plot. On the other side, it is
easy to show that Integral Sampling (Figure 1(b)) does not permit a
computation of the bounded measurement set H[e|t] requested for
the likelihood formulation, which turns out to be dependent on the
(generally unknown) analytic expression of y(t) in the integration
domain (even assuming y is monotonic in such an interval, only an
upper bound can be worked out).
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2.2. Extension to failing detectors

As already pointed out, we want to apply the EBSE to deal with the
issue of a failing detector, in order to achieve stable tracking in video
analysis. To this end, we consider the detection algorithm itself as
a sensor node. Then, instead of considering a failing detector, we
can think of a perfect detector (sensor node) communicating with an
estimator, but experiencing package loss. Package loss rate depends
on the performance of the chosen detector in the specific application
domain.

We mentioned before that a sampling strategy must be selected
in order to explicitly find an implementation of the filter. However,
this is not completely correct: a sampling strategy is sufficient to
give a (not always analytical) characterization of the set H[e|t] at
each time t, but not necessary. We have already pointed out the
importance of specifying such a set at each time te−1 in order to ap-
proximate the uniform distribution in eq. 8. However, we argue that
one can always think of specifying H[e|t] ”by hands”, without nec-
essarily deriving such specification from a given sampling strategy.

Namely, we refine in some sense the EBSE+send-on-delta al-
gorithm for application to failing detectors by relaxing the assertion
that the hybrid update is supported by a sampling strategy and sim-
ply rely on the assumption that at synchronous time instants, when
no measurement arrives from the sensor node, its value lies within a
bounded set nevertheless. The algorithm is still guaranteed to con-
verge to a bounded error-covariance as can be straightforwardly de-
rived from the asymptotic analysis of the EBSE proposed in [7]. It
is there in fact proved that there exist an asymptotic bound on the
largest (positive) eigenvalue of the error-covariance, provided that
H[e|t] is bounded at each time t, even in the situation that no new
measurement is received.

We thus have to provide H[e|t] to the EBSE algorithm at each
time t. For a video tracking state estimation problem, it is common
understanding (and reasonable to conjecture) that, given the position
y(tk) of the tracked target at time instant tk, its position can be lo-
cated, at time tk+1, within a (y(tk) − ∆, y(tk) + ∆) interval for
some finite (and appropriate) ∆. Such a span can be interpreted as
the (y(te−1)−∆, y(te−1) + ∆) bounded set previously introduced
for the send on delta strategy. However, asH[e|t] is not here derived
from a sampling strategy, ∆ is not an intrinsic parameter related to
the sampling but must estimated. Such an estimation must be heuris-
tic, at least to some extent, depending mainly on the dynamics of the
problem and on the geometry of the camera setup.

Looking at the problem from the reverse perspective, we can
mathematically interpret H[e|t] as the set where there is an approx-
imately uniform non-zero probability of having a measure at time t
(cfr. eq. 7). A reasonable guess for such a set can be constructed
from the system model equations (eq. 1, where we consider white
Gaussian noise, i.e. p(w) = N(0, Q)), by calculating the difference

|xk − xk−1| = |(A− I)xk−1 +Buk−1 + wk−1|, (11)

where the time k − 1 is here to be considered as the last time a
measurement arrived, i.e. te−1. By taking the largest eigenvalues
λA, λB and λQ of the matrices A, B and Q respectively, we can at
least have an idea of the order of magnitude of a reasonable ∆.

∆ ≈ |(λA − 1)x̂k−1|+ |λBuk−1|+ λQ, (12)

We empirically choose ∆ as twice this value, to be sure that the
integral in eq. 8 is always non-zero. As already pointed out,H[e|t] is
not here derived from a sampling strategy. Therefore, the next mea-
surement event instant te is not triggered as in eq. 9 and there might
be an overlapping of two sets at subsequent time instants as H[e|t]

is overestimated. This can result in a less accurate estimation, yet
the EBSE is guaranteed to converge, as the proof on its asymptotic
behaviour relies only on the fact thatH[e] is bounded.

We have so far considered a situation where a single detection
is missed and H[e|t] is to be computed once. However, a detector
failing in a set of m consecutive frames is a common situation. In
this case,H[e|t] has to be evaluated at each time tk as long as a new
measure arrives. The inherent knowledge of the numberm of missed
detections from the last measure can be here exploited to this end.

H[e|tk] = (y(te−1)−m ·∆, (y(te−1) +m ·∆) (13)

where tk is the time at which the m-th consecutive missed detection
takes place.

3. RESULTS

We tested the extended EBSE on the benchmark video sequences
from the 2009 PETS1 dataset. A single camera view was tested,
namely View 1; frame-rate of the sequence is ∼ 7[fps]. Obviously,
detection results do change with a different camera view and im-
prove as the framing gets more and more lateral, because of the bet-
ter defined pedestrian shape. However the point here is not about
detection performance; in fact we welcome missed detections as a
way of testing the estimation algorithm. Data association could be
quite easily included in the presented algorithm, but at this stage the
filter supports one target only. We thus had to select those clips of the
sequence where a single person crosses the scene. Sample frames are
shown in figure 2, together with the bounding boxes for detections,
prediction and updates.

(a) Detection event (b) Missed detection

Fig. 2. Sample frames and the EBSE at work, with bounding boxes:
the blue rectangle depicts the predicted position; the red one shows
the last detection (measure); the green box is the updated estimation.

For what concerns the testing detector, we employed one of the
most common state of the art descriptors, namely Histograms of Ori-
ented Gradients (HOG) features. Such cues were widely used for
pedestrian detection in the last few years [14] and led to detector
based on cascades of binary classifiers [15]. We exploited the C++
implementation of the open source HOG-based people detector sup-
plied by the OpenCV computer libraries [16]. This gives a bounding
box framing the pedestrian as an output. The state xk here consid-
ered is the centre (x, y) of the detected bounding box, as outputted
by the detector.

The algorithm was compared with a standard KF, which at each
time step tk estimates the state by first predicting its a priori pdf

1Performance Evaluation of Tracking and Surveillance workshop [13].
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(minus superscript) and then updating the mean and the covariance
of its a posteriori pdf:

x̂−k = Ax̂k−1 +Buk−1 (a)

P−k = APk−1A
T +Q (b)

(14)

x̂k = x̂−k +Kk(yk − Cx̂−k ) (a)

Pk = (I −KkC)P−k (b)

Kk = P−k C
T (CP−k C

T + V )−1 (c)

(15)

where Kk is the Kalman gain, Q and R are the covariance matrices
of p(w) = N(0, Q) and p(w) = N(0, R) respectively.

Such a filter (together with all its previously mentioned non-
linear and non-Gaussian extensions) copes with a missing detection
by utterly skipping the measurement update step (eq. 15). Basi-
cally, estimation is performed based on prediction only, as in dead-
reckoning, and it is then subject to cumulative errors, as it can be
easily guessed from the prediction equation for the state covariance,
eq. 14(b). Skipping the update step does not allow Pk to diminish
thanks to the Kalman gain, as can be deduced from eq. 15(b).

The most significant quantity to be studied is therefore the (a
posteriori) covariance matrix Pk, which incidentally represents the
second moment of the state distribution

Pk = E
[
(xk − x̂k) (xk − x̂k)T

]
, (16)

measuring the square discrepancy between the state and its expected
value. Actually, we compare the traces T (Pk) of the matrices,
which, being exactly the sum of the eigenvalues, can give an idea of
the maximum amount of dispersion of the distribution. Results for
the most significant portions of the considered video sequences are
given in Figures 3 and 4.

Fig. 3. T (Pk) for KF and EBSE versus time.

The parameters set in equations 14 and 15 are as follows

A =

(
1 0
0 1

)
, B =

(
1 0, 35
0 1

)
, C =

(
1 0
0 1

)
,(17)

Q =

(
2 0
0 2

)
, R =

(
3 0
0 3

)
(18)

As expected, the values of T (Pk) are comparable, indeed almost
identical, when detections take place. In fact, the two filters have the
very same behaviour in case a measure arrives from the (virtual)
sensor node. The two graphs had actually to be cut on the y axis for

Fig. 4. T (Pk) for KF and EBSE versus time.

readability. The higher the number of subsequent missed detection,
the higher the peaks. It can be easily seen that, on the contrary, the
value of T (Pk) for the EBSE algorithm always remains bounded,
supporting our initial guess that the EBSE could be heuristically ex-
tended beyond the sampling strategy approach.

As a final remark, we would like to point out that a discussion on
false detections was not included here, as this phenomenon affects
in the same way both the KF and the EBSE.

4. CONCLUSION

In this work we have proposed a possible extension of Event Based
State Estimation for failing detectors. This is accomplished by con-
sidering a node framework were the link between the sensor node
and the estimator experiences package loss. We suggest that the
assumption that measures are triggered by a sampling strategy can
be relaxed and the hybrid update of the estimator can simply rely
on the assumption that at synchronous time instants, when no mea-
surements arrive from the sensor node, there exists a bounded set
in which there is uniform probability of finding the lost measure.
Such a bounded set is upper bounded based on the dynamics of the
problem. Namely, Even without considering a rigorous mathemati-
cal definition of sampling, but constructing a guess for the set H by
means of eq. 13, the system attains stability.

Results show that the application to a failing HOG-based pedes-
trian detector in a video analysis framework is justified. The trace of
the error covariance matrix remains bounded, meaning that asymp-
totic stability of the filter is accomplished. In this sense the proposed
approach outperforms the standard KF-like estimation, which is sub-
ject to cumulative errors at synchronous time instants if no measures
are sent to the estimator.

Future developments of this work will include an extension
to the Joint Probability Data Association Filter for multiple target
tracking in video analysis. Also, we are confident that a finer char-
acterization of the set H might be possible. Such a representation
may recall the one described for the integral sampling, which is
worth giving a further investigation. In fact, its mechanism, which
includes time, is particularly suitable for a video surveillance state
estimation problem, where duration of stay in certain areas becomes
a relevant cue.
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