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ABSTRACT

We propose a low-cost system for indoor self-localization of mo-

bile devices using modulated LED ceiling lamps that are fully au-

tonomous and broadcast their identifiers without any synchroniza-

tion. The proposed self-localization method is designed to handle

this lack of synchronization as well as the possibility of blocked

line-of-sight connections or severe attenuation in real-world environ-

ments. This robustness is achieved by applying a suitable Bayesian

signal model and by taking into account the inherent sparsity in de-

tecting the concurrently visible lamps. The proposed estimator of

the location approximates optimal Bayesian estimation while main-

taining low complexity. Simulation results confirm a significant gain
in performance compared to a classical matched-filter approach.

Index Terms— Indoor localization, visible light, VLC, LED,

sparse signal recovery

1. INTRODUCTION

Indoor self-localization of mobile devices is a topic that has re-

cently attracted increasing attention. Its various applications include

indoor navigation as well as location-aware services and adver-

tisements in large public buildings such as museums or shopping

malls [1]. Satellite-based localization systems such as the global po-

sitioning system (GPS), which are widely used for precise outdoor

localization, are often unavailable in indoor environments where

signals from satellites are strongly attenuated or affected by multi-

path propagation. A number of alternative techniques are, thus, used

for indoor localization; examples include systems based on ultra-
wideband, infra red, WiFi, radio frequency identification (RFID),

Bluetooth, and ultrasound [2]. This wide range of technologies

varies significantly in localization precision, complexity, and price.

With the forthcoming change in lighting from traditional incan-

descent lamps to light-emitting diodes (LEDs), visible light is be-

coming an interesting option for indoor localization. Since LEDs are

suitable for modulation at high rates invisible to the human eye, each

lamp can be designed to act as a beacon by broadcasting a unique

identifier. Recording such identifiers allows a mobile device to lo-

calize itself around the known locations of the beacons.

Visible light technology offers a number of inherent advantages

compared to radiofrequency (RF) systems. One significant benefit

of using light is that it generally does not penetrate walls, which

allows correct detection of the room with high probability. Further-

more, light suffers less from multipath effects than RF signals, and

interference from other wireless systems is low. At the same time,

visible light based systems do not generate RF interference and thus

avoid congesting the limited ISM frequency bands. This also makes

them applicable to indoor environments where such interference is

of concern, e.g., due to the presence of other sensitive electronic de-
vices. Moreover, in places where lighting is needed for its own sake,

the expenses for additional infrastructure and power consumption

can be reduced to a minimum.

Prior work and state of the art. Among the previously proposed

localization systems that use modulated LEDs, some employ a single

photodiode in the receiver, while others rely on more elaborate re-

ceiver hardware. As an example of the second category, the receiver

presented in [3] uses an image sensor and a lens, which allows it

to determine the directions-of-arrival of light from multiple visible

LEDs. The system proposed here, on the other hand, belongs to

the first category, with the advantage of lower hardware complexity.
Within this category, some receivers such as [4, 5] calculate their dis-

tance from the beacons based on the received signal strength, while

others such as [6, 7] exploit the differences in the propagation delays

from different beacons. All of the solutions cited above, however,

rely on synchronization among the transmitters, which is costly to

implement, while the proposed method does not require such syn-

chronization. In [8], asynchronous transmission of the identifiers is

enabled by applying the ALOHA protocol. In this setup, however,

an identifier can only be transmitted successfully if no other bea-

con transmits at the same time, which may limit the time resolution.

The method proposed here, on the other hand, allows all beacons to

transmit their identifier simultaneously. Finally, all of the methods

mentioned above rely on a deterministic signal model that assumes

the presence of a line-of-sight to the beacons. The proposed method

is based on a Bayesian model that takes into account the possibil-
ity of obstructions, thereby making it significantly more robust than

methods ignoring this possibility.

Contributions. The main contributions of this paper are the fol-

lowing: First, due to the probabilistic signal model that takes into
account disturbances, the proposed localization method is robust to

obstructions of the line of sight from some of the beacons. Second,

the proposed method does not require any synchronization among

the beacons, thereby allowing them to be fully autonomous. Third,

by approximating an optimal Bayesian estimator and taking into

account the inherent sparsity in detecting the concurrently visible

beacons, the proposed method achieves excellent performance while

maintaining low complexity.

2. SYSTEM MODEL

A mobile device aims to determine its own position z (in two dimen-

sions) within a building, using the visible light signals it receives

from beacons in its vicinity. Each of the L beacons in the build-

ing is associated with an identifier, namely, a binary chip sequence

c(ℓ)[1], . . . , c(ℓ)[M ] from {1,−1}M , where ℓ ∈ {1, . . . , L} is the

beacon index. The sequences are chosen such that both their autocor-

relation for delays other than zero and their cross-correlation are low,

which is ensured, e.g., in Gold sequences [9]. This usually implies

that the sequence length M is larger than the number of beacons
L. It is not necessary to ensure that each sequence appears at most
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once within one building, because localization is never based on one

single beacon. Each beacon modulates its light with the binary se-

quence using on-off-keying (where “on” and “off” correspond to 1
and −1, respectively). The sequence is repeated continuously. The

chip rate 1/T is chosen high enough to ensure that the movement of

the mobile device within the duration of the entire sequenceMT can

be neglected. This usually also ensures that the modulation is well

above the frequency limit up to which the human eye would notice a
flickering effect, which is a prerequisite. The sequences transmitted

by different beacons are not synchronized with each other.

The mobile device knows the location of each beacon as well as

the chip sequence associated with it. From its (unknown) position z,

only a subset Lz ⊆ {1, . . . , L} of all beacons is potentially visible,

whereas the other beacons are hidden behind walls. Normally, the

number of potentially visible beacons Lz = |Lz| is much smaller

than L. The mobile device knows the locations of walls, there-

fore it knows Lz as a function of z. Using a single photodiode,

the mobile device receives a superposition of the signals transmit-

ted by several beacons and some additive noise. A simple amplifier

circuit produces a signal that is proportional to the received inten-

sity with its DC component (i.e., the time-average) removed. The

signal is then sampled at rate N/T , with N ∈ N. Let r(ℓ)[k] de-

note the chip sequence c(ℓ)[m] oversampled by a factor of N , i.e.,

r(ℓ)[k] = c(ℓ)[m] for k ∈
{
(m−1)N+1, ..., mN

}
. The sampled

zero-average received signal y[k] can then be expressed as

y[k] =
∑

ℓ∈Lz

xℓ r
(ℓ)[k⊕(−sℓ)] + n[k] , (1)

for k = 1, . . . ,MN . The contribution of beacon ℓ to y[k] is

weighted by a factor xℓ ∈ R and circularly shifted by an offset

sℓ ∈ S = {0, . . . ,MN − 1}. The operator ⊕ denotes an ad-

dition combined with a modulo operation: a⊕ b =
(
(a+ b− 1)

mod MN
)
+1. For ℓ /∈ Lz , we set xℓ = 0 and sℓ = 0. This allows

us to define the vectors x =
(
x1 · · ·xL

)
T and s =

(
s1 · · · sL

)
T,

where the superscript T denotes transposition. Let r(ℓ,s) denote the

length-MN vector that contains the sequence r(ℓ)[k] shifted by s,

i.e., r(ℓ,s) =
(
r(ℓ)[1 ⊕ (−s)] · · · r(ℓ)[MN ⊕ (−s)]

)
T. Using the

matrix R(s) =
(
r(1,s1) · · · r(L,sL)

)
, we can write (1) as follows:

y = R
(s)

x+ n , (2)

where y =
(
y[1] · · · y[MN ]

)
T and n =

(
n[1] · · ·n[MN ]

)
T.

The weight factor xℓ for ℓ ∈ Lz depends on the distance between

the position z of the mobile device and the position pℓ of beacon ℓ.
We model xℓ as a product of two factors:

xℓ = hℓA(dz,ℓ) with dz,ℓ = ‖pℓ − z‖ .
Here, hℓ is a stochastic shadowing factor that represents the proba-
bilities of some obstructions blocking the line of sight or attenuating

the signal strength. The second factor A(dz,ℓ) represents the re-

ceived signal strength in the absence of obstructions. Under some

simplifying assumptions, the expression presented in [10] for line-

of-sight links and generalized Lambertian transmitters leads to the

following relation:

A(dz,ℓ) =
A0,ℓ d

2
v,ℓ

(
d2v,ℓ + d2

z,ℓ

)2 , (3)

where dv,ℓ is the vertical distance between the transmitter and the

receiver and A0,ℓ (which depends on the brightness of beacon lamp

ℓ, among other things) is constant with respect to dz,ℓ. The mobile

device knows dv,ℓ and A0,ℓ for all ℓ. For practical application of

the proposed method, the the functionA(dz,ℓ) should be adapted ac-
cording to the characteristics of the transmitting and receiving diodes

as well as the local environment. The functionality of the proposed

method is not constrained to a particular choice of A(dz,ℓ).
The time-shifts sℓ contain no useful information, since the bea-

cons and the mobile device are not synchronized. While the time-

shifts sℓ in our model are discrete, the true propagation delays be-

tween beacons and the mobile device are not. This means that there

is a small but nonzero probability that some sampling instants of the

receiver fall into the short period while the received signal from bea-
con ℓ switches between −1 and 1. However, at most 1/N of the

samples may be affected, which justifies the use of larger N , at the

cost of higher complexity. The residual effect can be modeled as an

effect of the stochastic shadowing factor hℓ.

3. STOCHASTIC MODEL

For the sake of simplicity, the additive noise n is assumed to be

zero-mean, white, and Gaussian with variance σ2
n. The likelihood

function p(y|x, s) is therefore given as

p(y|x, s) = N
(
R

(s)
x, σ2

nI
)
, (4)

where I denotes the identity matrix. In practice, the role of additive

noise in visible light channels is often less significant than other ef-

fects such as interference between beacons, loss of the line of sight,
or random fluctuations of the received signal strength.

In our model, the parameters z, hℓ, and sℓ (both for all ℓ ∈ Lz)

are random. The location z is assigned a uniform prior:

p(z) = 1/D , (5)

whereD is the area within which we intend to localize the mobile de-

vice. The prior of the shadowing factor hℓ is defined as the weighted

sum of two Gaussian distributions. One of them represents the case

that the line of sight is not obstructed and the received signal strength

is close to its theoretical value A(dz,ℓ); this Gaussian distribution is

centered around 1 and weighted with α ∈ [0, 1]. The other one rep-

resents the case that the line of sight is obstructed or the signal is
attenuated; it has a larger variance and is centered around 0 to de-

scribe weak indirect illumination from the beacon. This yields

p(hℓ) = αN
(
1, σ2

1

)
+ (1− α)N

(
0, σ2

2

)
.

It follows that the prior of xℓ given the position z is

p(xℓ|z) = α√
2πσ1A(dz,ℓ)

exp

(

−
(
xℓ − A(dz,ℓ)

)2

2
(
σ1A(dz,ℓ)

)2

)

+
1− α√

2πσ2A(dz,ℓ)
exp

(

− x2
ℓ

2
(
σ2A(dz,ℓ)

)2

)

, (6)

for ℓ ∈ Lz . The shift sℓ for ℓ ∈ Lz is assigned a uniform prior:

p(sℓ|z) = 1/(MN) . (7)

For ℓ /∈ Lz , xℓ and sℓ are zero, i.e., p(xℓ|z) = δ(xℓ) and p(sℓ|z) =
δ(sℓ). For given z, the parameters x and s are a priori statistically

independent from each other and from the noise n, and their ele-

ments are also statistically independent from each other.

4. LOCALIZATION

4.1. MAP estimation of z

Our goal is to estimate the position z, given the observed signal y.

While the true position z is not discrete by nature, we discretize our

estimate by choosing it from a set Z that contains Z hypotheses.
The maximum a posteriori (MAP) detector is theoretically optimal
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in the sense that it minimizes the probability of an incorrect detection

if the true z is also from Z (which is, however, not the case here).

The MAP detector is found by maximizing the posterior distribution

p(z|y), which can be obtained by marginalizing the joint posterior

p(z,x, s|y):

ẑMAP = argmax
z

p(z|y) = argmax
z

∑

s

∫

p(z,x, s|y) dx

= argmax
z

∑

s

∫
p(y|x, s) p(x|z) p(z) p(s|z)

p(y)
dx ,

where Bayes’ rule has been used. By dropping factors that are con-

stant with respect to z, x, and s (cf. (5) and (7)), this simplifies to

ẑMAP = argmax
z

∑

s

∫

p(y|x, s) p(x|z) dx . (8)

In practice, the summation over all s ∈ SL = {0, . . . ,MN−1}L
simplifies to a sum over SLz , since only Lz elements of s can be

nonzero. Nevertheless, the complexity of (8) is still prohibitive.

We resort to the following modification: instead of marginalizing

p(z,x, s|y) with respect to s, we insert an estimate ŝ and thus ob-

tain (after simplifications analogous to those above)

ẑ = argmax
z

∫

p(y|x, ŝ) p(x|z) dx . (9)

The estimate ŝ is obtained from the following joint estimator of x
and s:

(x̂CS, ŝCS) = argmin
(x,s)

∥
∥y −R

(s)
x
∥
∥2

+ λ ‖x‖1 , (10)

where ‖ · ‖1 stands for the ℓ1-norm and λ > 0. This joint esti-

mator is discussed in Section 4.2. The estimator of z in (9) is of

tractable complexity and has shown good performance in our simu-

lations. However, by using the second output of the time-shift esti-

mator (i.e., x̂CS), we can achieve another dramatic reduction of the

complexity of (9). We start by finding the relation of x̂CS and the

true x. Let L̂ denote a set containing the indices of the nonzero ele-

ments of x̂CS, and let x̂L̂, xL̂, and R
(s)

L̂
comprise the corresponding

elements of x̂CS and x and the corresponding columns of R(s), re-

spectively. Furthermore, we use A♯ to denote the left pseudo-inverse

of a matrix A, i.e., A♯ =
(
ATA

)−1
AT. It can be shown that be-

cause of (10), x̂L̂ can be expressed as

x̂L̂ =
(
R

(̂sCS)

L̂

)♯
y =

(
R

(̂sCS)

L̂

)♯ (
R

(s)
x+ n

)

= xL̂ +
(
R

(̂sCS)

L̂

)♯ (
R

(s)
x−R(̂sCS)

L̂
xL̂

)
+

(
R

(̂sCS)

L̂

)♯
n

︸ ︷︷ ︸

v

,

where the vector v comprises the filtered noise as well as distortions

due to erroneous ŝCS and L̂. Simulation results have shown that the

statistical dependence of v on x and s can be neglected in our esti-

mation method without compromising its performance. This seems

plausible, since the columns of R(̂sCS) are only weakly correlated,

on one hand, and significant errors in ŝCS are very rare, on the other

hand. We therefore model v as white and Gaussian with variance

σ2
v = 1

|L̂|
σ2
n tr

(
P

−1 )
with P =

(
R

(̂sCS)

L̂

)T
R

(̂sCS)

L̂
, (11)

where |L̂| denotes the cardinality of L̂. The same relation is adopted

for the remaining elements of x̂CS and x, i.e.,

p(x̂CS|x) = N
(
x, σ2

vI
)
. (12)

Using this distribution as a likelihood function, we can reformulate

our estimator of z based on x̂CS as observed data, rather than on

y. The key advantage of the likelihood function (12) compared to

(4), besides its lower dimensionality, is that it can be factorized as

follows: p(x̂CS|x) =
∏L
ℓ=1 p(x̂ℓ|xℓ), where each factor depends

only on one element of x. By replacing p(y|x, ŝ) with p(x̂CS|x) in

(9), we obtain

ẑ = argmax
z

∫

p(x̂CS|x) p(x|z) dx

= argmax
z

∫ L∏

ℓ=1

p(x̂ℓ|xℓ)p(xℓ|z) dx

= argmax
z

L∏

ℓ=1

∫

e−(x̂ℓ−xℓ)
2/(2σ2

v
) p(xℓ|z) dxℓ .

In the last step, we used (12) and dropped some constant factors. It

can be shown that inserting (6) finally leads to

ẑ = argmax
z

∏

ℓ∈Lz

(

ηℓ e
ϕ2
ℓ
(x̂ℓ+γℓ)

2

+ ξℓ e
ψ2
ℓ
x̂2
ℓ

)

, (13)

with

ηℓ =
αϕℓ

√
2σ2

v

σ1 A(dz,ℓ) e1/(2σ
2
1)
,

ϕℓ =

(
2σ4

v

σ2
1

(
A(dz,ℓ)

)2 + 2σ2
v

)− 1
2

,

γℓ =
σ2
v

σ2
1A(dz,ℓ)

,

ξℓ =
(1−α)ψℓ

√
2σ2

v

σ2 A(dz,ℓ)
,

and ψℓ defined analogously to ϕℓ by replacing σ2
1 with σ2

2 . After

observing y, the proposed localization method first estimates x and

s as described in Section 4.2 and then estimates z according to (13).

To further reduce complexity (without changing ẑ), the set of all

hypotheses Z can be replaced by the set of all positions from which

at least one of the beacons in L̂ can be seen.

4.2. Joint estimation of x and s

Estimating both x and s from y (according to the system model in

(2)) is an ill-posed problem. To see this more clearly, we extend the

definition of xℓ to a 2-dimensional domain comprising all beacons

and all possible shifts, i.e., χℓ,s = xℓ if s = sℓ and χℓ,s = 0
otherwise. Using this definition, we can rewrite (2) as follows:

y = Rχ+ n , (14)

with the length-LMN vector χ =
(
χ1,1 · · · χ1,MN χ2,1 · · ·

χL,MN

)
T and the MN × LMN matrix R =

(
r(1,1) · · · r(1,MN)

r(2,1) · · · r(L,MN)
)
. Now R does not depend on s, whileχ contains

all information about both x and s. The formulation in (14) clearly

shows that the problem of estimating χ from y is ill-posed, since
the number of measurements MN is much smaller than the number

of signal dimensions LMN . In this situation, a classical approach

would be to estimate each (xℓ, sℓ) separately, by maximizing the

output of a matched filter with the corresponding sequence r(ℓ)[k]:

x̂ℓ,MF = max
s∈S

(
r
(ℓ,s)

)
T
y , ŝℓ,MF = argmax

s∈S

(
r
(ℓ,s)

)
T
y . (15)

These straight-forward estimators are easy to implement, but they

ignore the correlation among different sequences r(ℓ,s), which lim-

its their performance. Since the signal strength declines rapidly with

increasing distance (cf. (3)), even weak correlation causes strong in-

terference from the closer beacons in the signals from more distant
beacons.
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However, the particular properties of χ allow for joint estima-

tion of (x, s), which overcomes this problem. Note that χ is highly

sparse; only Lz of its LMN elements are nonzero. Besides spar-

sity, χ must also satisfy an additional structural constraint: for each

ℓ, only one of the MN elements χℓ,s may be nonzero. This can

be formulated as a block constraint: within χ, each block of length

MN may contain at most one nonzero element. Let C ⊆ R
LMN

denote the set of all vectors χ that satisfy this constraint. Then (10)
can be written as

χ̂CS = argmin
χ∈C

‖y −Rχ‖2 + λ ‖χ‖1 .

This can be seen as a problem of sparse-signal recovery. Corre-

sponding methods have been studied extensively in the field of com-

pressive sensing (CS) [11], including localization and radar applica-

tions [12]. Due to its sparsity, the vector χ can be recovered sta-

bly if the measurement matrix R satisfies certain properties [11]. A

popular algorithm for solving such problems is orthogonal matching

pursuit (OMP) [13]. Algorithm 1 shows the steps of the proposed

OMP algorithm for estimating x and s. Here, ŝ =
(
ŝ1 · · · ŝL

)
T,

RW(i) denotes the MN×i matrix whose columns are r(ℓ,s) for all

(ℓ, s) ∈ W(i), and ̺ > 0. In our simulations, ̺ = 0.85MNσ2
n

showed to be a good choice.

Algorithm 1 OMP algorithm for estimating x and s

1: ỹ(0) ← y, L(0) ← {1, . . . , L},W(0) ← ∅, x̂CS ← 0, ŝ← 0

2: Iterate for i = 1, 2, . . . while i ≤ L and ‖ỹ(i−1)‖2 > ̺

3:
(
ℓ(i), s(i)

)
← argmax(ℓ,s)∈L(i−1)×S

∣
∣
(
r(ℓ,s)

)
T ỹ(i−1)

∣
∣

4: L(i) ← L(i−1)\ℓ(i)
5: ŝℓ(i) ← s(i)

6: W(i) ←W(i−1) ∪
(
ℓ(i), s(i)

)

7: x(i) ← argmin
x∈Ri ‖y −RW(i) x‖2

8: ỹ(i) ← y −RW(i) x
(i)

9: x̂L̂ ← x(i), ŝCS ← ŝ

In the unlikely case that two beacons ℓ1 and ℓ2 use the same chip

sequence, we can still assume that the two corresponding time-shifts

are different. Then, the only effect of the identical sequences is that

the two elements of x̂CS corresponding ℓ1 and ℓ2 may be switched.

We can cope with this by calculating ẑ for each version of x̂CS and
choosing the one for which the decision metric of (13) is larger.

5. NUMERICAL RESULTS

To evaluate the performance and complexity of the proposed

method, we performed 10000 simulations using the floorplan shown

in Fig. 1. In the following, all lengths are normalized with respect

to a unit length of 1 meter. We randomly generated the parameters

according to the priors given in Section 3, with L = 137, M = 256,

N = 4, A0,ℓ = 2.25, dv,ℓ = 1.5 for all ℓ, α = 0.7, σ2
1 = 2 · 10−2,

and σ2
2 = 4.6 · 10−2. The chip sequences c(ℓ)[m] were randomly

generated in each simulation. To obtain a constant signal-to-noise

ratio of 10dB, we set σ2
n = ‖R(s) x‖2/(10MN) in each simula-

tion. The estimator calculates σ2
v according to (11). The Z = 14400

hypotheses for ẑ are arranged in a rectangular grid of dimensions

120 × 120 with minimum distance 0.25 (i.e., 25cm). The true

positions of the mobile device z are not discretized to this grid but

drawn from a (spatially continuous) uniform distribution over the

entire area of the floorplan, as stated in (5).

We compare the results of our method to those of two reference
methods. The methods listed in Section 1 are not designed for this

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Fig. 1. Floor plan of dimensions 30× 30 (with unit length 1m). The

dots represent the locations of beacons.
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Fig. 2. Empirical cumulative distribution function of ǫ = ‖ẑ − z‖
obtained in 10000 simulations. For ǫ < 3.5, the lines of RM1 and

RM2 almost coincide.

kind of setup and can thus not easily be compared. Instead, we re-

sort to a classical matched-filter approach as a reference method (la-
beled “RM1”). In the first step, each x̂ℓ is obtained as the maximum

output of a time-domain matched filter according to (15). In the

second step, ẑ is obtained as the maximizer of a “beacon-domain”

matched filter: ẑMF =argmax
z

∑L
ℓ=1 x̂ℓA(dz,ℓ). The second ref-

erence method (labeled “RM2”) first estimates x̂CS according to (10)

like the proposed method and then uses it to calculate ẑMF like RM1.

Fig. 2 shows the empirical cumulative distribution function (cdf) of

the localization error ǫ = ‖ẑ − z‖ obtained with the three meth-

ods. The proposed method clearly outperforms the reference meth-

ods in terms of the localization error. The root mean squared error

of ẑ obtained with the proposed method is 0.81, while that of RM1

and RM2 is 2.85 and 1.81, respectively (recall that 1 corresponds

to a length of 1m). The average computation time of the proposed

method for an unoptimized MATLAB R2012a 64-bit implementa-

tion on a 2.93-GHz Intel Core i7-870 processor (which may be re-

duced significantly when implemented in practice) was 0.33s, which
seems fair enough for practical applications.

6. CONCLUSION

We proposed a Bayesian method for indoor self-localization of mo-

bile devices using visible light from modulated LED light sources.

In contrast to existing systems, the proposed method does not require

synchronization of the transmitters. This allows the light sources to

be fully autonomous, ensuring a minimum of infrastructure require-

ments and costs. By using a suitable probabilistic model and taking

into account the inherent sparsity in detecting the concurrently active

light sources, the proposed method achieves high robustness with re-

spect to obstructions of the lines of sight, excellent performance, and
low complexity.
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