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ABSTRACT

We propose an iterative extension of the covariance intersection
(CI) algorithm for distributed data fusion. Our iterative CI (ICI) al-
gorithm is able to disseminate local information throughout the net-
work. We show that the ICI algorithm converges asymptotically to
a consensus across all network nodes. We furthermore apply the
ICI algorithm to distributed sequential Bayesian estimation and pro-
pose an ICI-based distributed particle filter (DPF). This DPF allows
for spatially correlated measurement noises with unknown cross-
correlations and does not require knowledge of the network size.
The performance of the proposed DPF is assessed experimentally
for a target tracking problem.

Index Terms— Distributed data fusion, covariance intersection,
distributed estimation, distributed particle filter, sensor network.

1. INTRODUCTION

Contribution and relation to previous work. Distributed (de-
centralized) data fusion has important applications in sensor net-
works [1–4]. Frequently, the information to be fused throughout the
network is in the form of local state estimates at the individual sen-
sor nodes and corresponding estimated error covariance matrices.
A well-known problem in this setting is the fact that the local esti-
mates are often correlated with unknown cross-correlations. Ignor-
ing these correlations may lead to “nonconservative” fused estimates
with overconfident error covariance matrices [5, 6].

A popular approach to distributed data fusion is the covariance in-
tersection (CI) algorithm, which conservatively fuses the local esti-
mates for arbitrary cross-correlations [5–7]. In a network with com-
munication links only between spatially close sensors, CI can only
provide fusion of the associated local estimates. If the CI algorithm
is employed as part of a sequential estimation scheme, local informa-
tion can still be disseminated throughout the network, but only over
many time steps (recursions) of the sequential estimation scheme.

Here, we introduce an iterative CI (ICI) algorithm that dissemi-
nates local information throughout the network. Although each sen-
sor communicates only with its neighbors, the ICI algorithm con-
verges asymptotically to a consensus on a global estimate that re-
flects the information of all sensors and is conservative. Our ICI
algorithm is related to the average consensus-based fusion algorithm
proposed in [8], with the difference that the weights used in our al-
gorithm change in each iteration and depend on the fused quantities,
but are independent of the network topology. This can lead to im-
proved performance, as will be demonstrated using simulations.

We furthermore present an application of the ICI algorithm to
distributed Bayesian filtering and propose an ICI-based distributed
particle filter. In comparison to applying standard CI, the estima-
tion performance is improved at the cost of additional intersensor
communications. In contrast to state-of-the-art consensus-based dis-
tributed particle filters [9–12], the number of sensors need not be
known. This is especially advantageous when the number of sensors
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changes over time. Furthermore, the local measurement noises are
allowed to be correlated with unknown cross-correlations.

Paper outline. In Section 2, we formulate the distributed data fu-
sion problem and review the CI algorithm. The proposed ICI al-
gorithm is developed and discussed in Section 3. In Section 4, we
apply the ICI algorithm to distributed Bayesian filtering and propose
an ICI-based distributed particle filter algorithm. Finally, simulation
results assessing the performance of the proposed distributed particle
filter for a target tracking problem are presented in Section 5.

2. DISTRIBUTED DATA FUSION AND CI

We consider a sensor network composed of K sensors, where each
sensor k ∈ {1, . . . ,K} is able to communicate with a set Nk ⊆
{1, . . . ,K}\{k} of neighboring sensors. The communication graph
is assumed to be connected. Each sensor k calculates a local estimate
x̂k ∈ R

M of an unknown random state vector x ∈ R
M and a corre-

sponding estimated error covariance matrix Ĉk∈R
M×M. The local

estimates x̂k are assumed unbiased, i.e., E{x̂k−x} = 0, and “con-

servative” in the sense that Ĉk−Ck ≥ 0 [3,5]. Here, Ck is the true
error covariance matrix associated with x̂k, i.e., Ck = E

{(
x̂k−x−

E{x̂k−x}
)(
x̂k−x − E{x̂k−x}

)⊤}
= E{(x̂k−x)(x̂k−x)⊤},

and the notation A≥ 0 expresses the fact that the square matrix A
is positive semidefinite. The local estimates x̂k are allowed to be
correlated with unknown cross-correlations.

Our goal is to fuse all local estimates x̂k and local covariances

Ĉk into a global estimate x̂ and a global covariance Ĉ (here, Ĉ is
an estimate of the true global error covariance matrix associated with

x̂, C = E{(x̂−x)(x̂−x)⊤}). The fusion should be performed in
a distributed (decentralized) manner, using only local computations
and communication with neighboring sensors, and in such a way that

each sensor obtains the same global x̂ and Ĉ. Conservative fusion
in the case of unknown cross-correlations of the x̂k is achieved by

the CI algorithm [5, 6], which calculates x̂ and Ĉ as

Ĉ =

(
K∑

k=1

ωkĈ
−1
k

)−1

, x̂ = Ĉ

K∑

k=1

ωkĈ
−1
k x̂k . (1)

Here, the weights ωk satisfy 0 < ωk < 1 and
∑K

k=1 ωk = 1 but
are arbitrary otherwise. It is shown in [3, 5, 6] that the estimate x̂ is

conservative, i.e., Ĉ−C ≥ 0, and unbiased, i.e., E{x̂−x} = 0.
To obtain x̂ and Ĉ at each sensor using (1), a fully connected net-

work is required or a suitable routing of the local estimates has to
be employed. A straightforward adaptation of (1) to a (locally) con-
nected network without routing is obtained by summing only over

the extended neighborhood Ñk , Nk ∪ {k} of each sensor k [13].
This means that sensor k obtains only partial, neighborhood-based

estimates, denoted as x̂Ñk
and ĈÑk

, which are given by

ĈÑk
=

( ∑

k′∈Ñk

ωk,k′Ĉ
−1
k′

)−1

, x̂Ñk
= ĈÑk

∑

k′∈Ñk

ωk,k′Ĉ
−1
k′ x̂k′ .

(2)

Here, the weights ωk,k′ are now k-dependent and assumed to satisfy
0 < ωk,k′ < 1 and

∑
k′∈Ñk

ωk,k′ = 1.
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3. THE ITERATIVE CI ALGORITHM

Using the “local CI algorithm” (2), each sensor obtains a “partial” es-

timate x̂Ñk
and covariance ĈÑk

that reflect the local estimates x̂k′

and covariances Ĉk′ only within the respective extended neighbor-
hood, i.e., for k′∈ Ñk. To overcome this limitation, we propose the
iterative CI (ICI) algorithm. In each iteration of the ICI algorithm,
each sensor performs a CI-based fusion of the partial estimates re-
ceived from its neighbors. The result of this fusion is transmitted
back to the neighbors and fused by them in the next iteration. Over
the iterations, the information is disseminated throughout the net-
work and, as we will show, a consensus across all sensors is reached
asymptotically. Furthermore, since a CI-based fusion is used at each
iteration, the estimates at each iteration are guaranteed to be unbi-
ased and conservative.

Defining Γk , Ĉ−1
k , ΓÑk

, Ĉ−1

Ñk
, γk , Ĉ−1

k x̂k, and γÑk
,

Ĉ−1

Ñk
x̂Ñk

, the local CI algorithm (2) can be rewritten as

ΓÑk
=
∑

k′∈Ñk

ωk,k′Γk′ , γÑk
=
∑

k′∈Ñk

ωk,k′γk′ . (3)

The ICI algorithm is an iterative variant of this formulation.

ITERATIVE CI (ICI) ALGORITHM

1. Local “states” γ
(i)
k ∈ R

M and Γ
(i)
k ∈ R

M×M are initialized at

each sensor k as γ
(0)
k = Ĉ−1

k x̂k and Γ
(0)
k = Ĉ−1

k .

2. For i = 1, 2, . . . , imax, each sensor k performs the following
steps:

(a) The previous states γ
(i−1)
k and Γ

(i−1)
k are broadcast to all

neighbors k′∈Nk.

(b) Weights ω
(i)
k,k′ are calculated, e.g., as [7]

ω
(i)
k,k′ =

tr
{
(Γ

(i−1)
k′ )−1}

∑
l∈Ñk

tr
{
(Γ

(i−1)
l )−1

} , k′∈ Ñk ,

where tr{·} denotes the trace. Other weight definitions pro-
posed in the CI literature—e.g., [6,14]—can be used as well.
Note that the weights change with each iteration and depend

on Γ
(i−1)
k′ (possibly also on γ

(i−1)
k ). However, unlike, e.g.,

the frequently used Metropolis weights [8, 24], they do not
depend on the network topology.

(c) The local states are updated according to (cf. (3))

Γ
(i)
k =

∑

k′∈Ñk

ω
(i)
k,k′Γ

(i−1)
k′ , γ

(i)
k =

∑

k′∈Ñk

ω
(i)
k,k′γ

(i−1)
k′ .

(4)

3. Estimates of x and C are derived from γ
(imax)
k and Γ

(imax)
k as

Ĉ
(imax)
k =

(
Γ

(imax)
k

)−1
, x̂

(imax)
k = Ĉ

(imax)
k γ

(imax)
k . (5)

In Step 2, each sensor broadcasts imax [M + M(M+1)/2] real
numbers to its neighbors.

The following results are proved in the Appendix.

Proposition 1 The estimates x̂
(imax)
k and Ĉ

(imax)
k in (5) satisfy the

following properties:

(i) They are unbiased, i.e., E
{
x̂
(imax)
k −x

}
= 0 for all imax.

(ii) They are conservative, i.e., Ĉ
(imax)
k −C

(imax)
k ≥ 0 for all imax,

where C
(imax)
k , E

{(
x̂
(imax)
k −x

)(
x̂
(imax)
k −x

)⊤}
.

(iii) For imax → ∞, they become equal for all k ∈ {1, . . . ,K}, i.e.,

limimax→∞ x̂
(imax)
k = x̂(∞) and limimax→∞ Ĉ

(imax)
k = Ĉ(∞).

Properties (i) and (ii) are consequences of, respectively, the unbi-
asedness and conservativeness assumptions made in Section 2 (i.e.,

E{x̂k − x} = 0 and Ĉk −Ck ≥ 0). Property (iii) means that,
after convergence, all local states in (4) have reached a consensus
across all sensors. In contrast to the result of an average consensus
algorithm [15] or the fusion algorithm in [8], the asymptotic values
are not arithmetic averages of the initial states in general. Further-
more, the estimates in (5) are generally different from the estimates
obtained using the “standard CI algorithm” (1) (recall that (1) pre-
supposes a fully connected network or the use of routing). However,
in Section 5, we will demonstrate experimentally that use of the two
algorithms within a distributed particle filter leads to a similar es-
timation performance. We also note that for imax = 1, the ICI algo-
rithm is identical to the “local CI algorithm” (2). In what follows, we
assume that imax is sufficiently large, so that any differences between

x̂
(imax)
k , Ĉ

(imax)
k at different sensors k are negligible, and we will thus

denote these quantities simply as x̂ and Ĉ, without the index k.

4. APPLICATION TO DISTRIBUTED BAYESIAN
FILTERING

We will now show how the ICI algorithm can be used to obtain a
distributed sequential Bayesian estimation (filtering) scheme and, in
particular, a distributed particle filter. We consider a random, time-
varying state vector xn ∈R

M that evolves according to

xn = gn(xn−1,un) , n ∈ {1, 2, . . .} , (6)

where gn(· , ·) is a generally nonlinear function and un is white driv-
ing noise with a known probability density function (pdf) f(un). At
time n, xn is sensed by K sensors according to the measurement
models

zn,k = hn,k(xn,vn,k) , k ∈ {1, . . . ,K} . (7)

Here, zn,k ∈ R
Nn,k is the measurement of sensor k, hn,k(· , ·) is

a generally nonlinear function, and vn,k is measurement noise with
a known pdf f(vn,k). We assume that (i) vn,k and vn′,k′ are in-
dependent unless n= n′; (ii) the initial state x0 and the sequences
un and vn,k are all independent; and (iii) sensor k knows gn(· , ·)
and hn,k(· , ·) but not hn,k′(· , ·) for k′ 6= k. The measurement
noises at different sensors, vn,k and vn,k′ for k 6= k′, are allowed
to be correlated with unknown cross-correlations. We denote by

zn , (z⊤n,1 · · · z
⊤
n,K)⊤ the vector containing the measurements of

all sensors at time n. Equations (6) and (7) together with our sta-
tistical assumptions determine the state-transition pdf f(xn|xn−1),
the local likelihood function f(zn,k|xn), and the global (all-sensors)
likelihood function f(zn|xn).

4.1. ICI-based Distributed Bayesian Filtering

Our goal is to estimate the state xn from z1:n , (z⊤1 · · · z⊤n )
⊤, i.e.,

from the measurements of all sensors up to time n, using a dis-
tributed (decentralized) scheme in which each sensor obtains an es-
timate reflecting the measurements of all sensors. We consider the
minimum mean-square error (MMSE) estimator [16]

x̂
MMSE
n , E{xn|z1:n} =

∫

RM

xnf(xn|z1:n) dxn . (8)

The posterior pdf f(xn|z1:n) in (8) can be calculated sequentially
from the previous posterior f(xn−1|z1:n−1) and the global likeli-
hood function f(zn|xn) [17]. However, straightforward distributed
calculation of f(xn|z1:n) presupposes that all sensor measurements
and the global likelihood function are available at each sensor.
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Here, we propose the following alternative approach. First, each
sensor k computes its own local posterior pdf

f(xn|z1:n−1, zn,k)

∝ f(zn,k|xn)

∫
f(xn|xn−1)f(xn−1|z1:n−1) dxn−1 . (9)

This merely presupposes that sensor k knows its own measurement
zn,k and local likelihood function f(zn,k|xn), and that it obtained
the previous global posterior f(xn−1|z1:n−1) at time n−1 (as will
be discussed presently). Then, for distributed data fusion, the local
posterior (9) is approximated by a Gaussian pdf, i.e.,

f(xn|z1:n−1, zn,k) ≈ N (xn; x̂n,k, Ĉn,k) , (10)

where x̂n,k and Ĉn,k are, respectively, the mean vector and covari-
ance matrix of f(xn|z1:n−1, zn,k). Next, the local means x̂n,k and

covariances Ĉn,k of all sensors k are fused in a distributed way us-
ing the ICI algorithm. The resulting global mean x̂n and covariance

Ĉn establish a Gaussian approximation of the global posterior, i.e.,

f(xn|z1:n) ≈ N (xn; x̂n, Ĉn) . (11)

This is used at the next time n+1 to compute the local posterior
according to (9). Furthermore, the global mean x̂n provides an ap-
proximation of the global MMSE estimate (8).

4.2. An ICI-based Distributed Particle Filter

For a general nonlinear/non-Gaussian system model, straightforward
evaluation of (9) is typically infeasible. A computationally feasi-
ble approximation can be obtained by a particle filter (PF), which
represents the local posterior by samples (particles) and associated
weights [18–20]. Next, we present a distributed particle implemen-
tation of the distributed Bayesian filter described in Section 4.1. In
this distributed PF (DPF), each sensor runs a local PF that computes
a particle representation of the local posterior (9). For a tractable
distributed fusion of local posteriors, a Gaussian representation (10)
is calculated at each sensor from the local particles. A Gaussian rep-
resentation (11) of the global posterior is then obtained by using the
ICI algorithm to fuse the local Gaussian representations.

ICI-BASED DISTRIBUTED PF ALGORITHM

The local PF at sensor k is initialized at time n=0 with J particles{
x
(j)
0,k

}J
j=1

randomly drawn from a prior pdf f(x0).

At time n≥1, J particles
{
x
(j)
n−1,k

}J
j=1

are available at sensor k

from the previous recursion (at time n−1). The local PF at sensor k
then updates these particles by performing the following steps:

1. For each particle x
(j)
n−1,k, a new “predicted” particle x̄

(j)
n,k is

drawn from f(xn|x
(j)
n−1,k) ≡ f(xn|xn−1)

∣∣
xn−1=x

(j)
n−1,k

.

2. Weights η
(j)
n,k associated with the particles x̄

(j)
n,k are calculated

by setting η̃
(j)
n,k = f(zn,k|x̄

(j)
n,k) and performing a normaliza-

tion, i.e., η
(j)
n,k = η̃

(j)
n,k/

∑J

j′=1 η̃
(j′)
n,k . The set

{(
x̄
(j)
n,k , η

(j)
n,k

)}J
j=1

provides a particle representation of the current local posterior
f(xn|z1:n−1, zn,k).

3. From
{(

x̄
(j)
n,k , η

(j)
n,k

)}J
j=1

, an approximation of the local poste-

rior mean is computed as x̂n,k =
∑J

j=1η
(j)
n,k x̄

(j)
n,k , and an as-

sociated error covariance matrix (posterior covariance) is esti-

mated as Ĉn,k =
∑J

j=1η
(j)
n,k

(
x̄
(j)
n,k − x̂n,k

)(
x̄
(j)
n,k − x̂n,k

)⊤
=

∑J

j=1η
(j)
n,kx̄

(j)
n,kx̄

(j)⊤
n,k − x̂n,kx̂

⊤
n,k.

4. The ICI algorithm is executed, using the estimates x̂n,k and Ĉn,k

for k∈{1, . . . ,K} as its input. As a result of the ICI algorithm,

each sensor obtains global quantities x̂n and Ĉn, which establish

a Gaussian approximation N (xn; x̂n, Ĉn) of the global poste-
rior f(xn|z1:n) (cf. (11)). Furthermore, x̂n is an approximation
of the global MMSE estimate (8).

5. J particles
{
x
(j)
n,k

}J
j=1

are sampled from N (xn; x̂n, Ĉn).

Note that only Step 4 requires communication between (neigh-
boring) sensors. The total count of real numbers that are broadcast
by each sensor to its neighbors at time n is imax [M +M(M+1)/2],
where, as before, imax is the number of CI iterations and M is the
dimension of xn. All other steps are performed locally at sensor k,
using only locally available information.

In contrast to most consensus-based DPFs (e.g., [9–12]), the ICI-
based DPF presented above does not require knowledge of the num-
ber of sensors in the network. This makes it particularly suitable
for networks with a time-varying number of sensors. With conven-
tional consensus-based DPFs, the number of sensors would have to
be estimated in each time step. This may introduce significant ad-
ditional latency, especially in large networks, and an incorrect esti-
mate of the number of sensors can degrade the performance of the
DPF. Another advantage of our ICI-based DPF is the fact that the lo-
cal measurement noises are allowed to be correlated with unknown
cross-correlations. Most consensus-based DPF schemes assume un-
correlated measurement noises, exceptions including [21, 22].

5. NUMERICAL RESULTS

We consider a target tracking application in which the state vector

xn = (xn yn ẋn ẏn)
⊤ represents the two-dimensional position and

velocity of a single target in the x-y plane. The state vector evolves
according to (cf. (6))

xn = Gxn−1 +Hun , n ∈ {1, 2, . . .} ,

where the matrices G ∈ R
4×4 and H∈ R

4×2 are chosen as in [9]
and the driving noise vectors un ∈ R

2 are independent and identi-
cally distributed according to N (02, σ

2
uI2) with σ2

u = 0.01. The
network consists of K = 25 sensors, which are deployed on a jit-
tered grid within a square of size da×da with da=40. Each sensor
communicates with other sensors within a radius of dc = 11 . The
(scalar) measurement of sensor k is given by (cf. (7))

zn,k =
A

‖ρ(xn)− ξk‖2
+ vn,k ,

where ρ(xn), (xn yn)
⊤ is the position of the target, ξk is the posi-

tion of sensor k, and A=10 is the amplitude of an acoustic or elec-
tromagnetic signal emitted by the target. Unless specified otherwise,

the all-sensors measurement noise vector vn , (vn,1 · · · vn,25)
⊤ is

distributed as vn∼ N (0,Q−1) and independent for different times
n. Here, the entries of the precision matrix Q are chosen as [21, 23]

Qk,k′ =

{
q , k=k′

−q′(da−‖ξk−ξk′‖) , k 6=k′,

with q = 105 and q′ = 180. Thus, the measurement noise vn,k is
correlated across the sensors k.

We simulated the following PF methods: (i) the proposed ICI-
based DPF (abbreviated ICI-DPF); (ii) a DPF that uses the fusion
rule [8] with Metropolis weights [24] (abbreviated M-DPF); (iii) a
state-of-the-art consensus-based DPF (abbreviated C-DPF) that uses
an average consensus algorithm to calculate a Gaussian approxima-
tion of the global posterior from Gaussian approximations of local
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Fig. 3. ARMSE versus number of CI or con-
sensus iterations imax for uncorrelated mea-
surement noises.

posteriors [9, 10]; (iv) a DPF that uses the standard CI algorithm in
(1) to fuse all local estimates in a single step (abbreviated CI-DPF;
the weights were chosen as suggested in [7]); (v) a DPF using the lo-
cal CI algorithm in (2) (abbreviated LCI-DPF; this equals ICI-DPF
with imax = 1); and (vi) a centralized PF (CPF) that transmits all
measurements to a fusion center for processing. The communication
requirements of ICI-DPF, M-DPF, and C-DPF are exactly equal: in
each iteration, each sensor broadcasts to its neighbors a mean vector
and a covariance matrix. Note that CI-DPF presupposes a fully con-
nected network or routing of estimates from each sensor to all other
sensors, which is often impractical.

The number of particles at each sensor (for the DPFs) and at the
fusion center (for the CPF) is J = 5000. The DPFs know only the
diagonal entries of the noise precision matrix Q (i.e., q), whereas
the CPF knows the entire Q. As a performance measure, we use the
root-mean-square error of the estimate of ρ(xn), denoted RMSEn,
which is computed as the square root of the average of the squared
position estimation error at time n over all sensors and 1000 sim-
ulation runs. We also compute the average RMSE (ARMSE) by
averaging RMSE2

n over all 200 simulated time instants n and taking
the square root of the result.

Fig. 1 shows the evolution of RMSEn. Here, ICI-DPF and M-
DPF use imax = 10 CI iterations and C-DPF uses 10 average con-
sensus iterations. We observe that ICI-DPF outperforms C-DPF, M-
DPF, and LCI-DPF and performs almost as well as CI-DPF and CPF.

Fig. 2 shows the ARMSE versus the number of CI iterations
used by ICI-DPF and M-DPF or the number of average consensus
iterations used by C-DPF, both denoted by imax. As expected, the
ARMSE decreases with growing imax. The ARMSE of CI-DPF
(which does not depend on imax because CI-DPF does not employ
ICI or average consensus) is also shown as a reference. For grow-
ing imax, the ARMSE of ICI-DPF comes close to that of CI-DPF.
Furthermore, ICI-DPF outperforms both C-DPF and M-DPF.

Fig. 3 shows the ARMSE versus imax for the case of uncorrelated
measurement noises. The local measurement noises vn,k are Gaus-

sian with variance σ2
v = 1/q = 0.00001. Again, ICI-DPF out-

performs C-DPF and M-DPF, and its ARMSE comes close to that
of CI-DPF for large imax. However, C-DPF now performs better
than previously, and for higher imax it approaches the performance
of ICI-DPF. This result is not unexpected because C-DPF assumes
uncorrelated measurement noises.

6. CONCLUSION

The proposed iterative covariance intersection (ICI) algorithm for
distributed data fusion disseminates local information throughout the
network and provides each sensor with a global estimate. The ICI
algorithm uses only local communication between neighboring sen-
sors; a fully connected network or routing is not required. Conver-
gence of the ICI algorithm to a consensus across all sensors is guar-

anteed asymptotically. We applied the ICI algorithm to distributed
sequential Bayesian estimation and, in particular, proposed an ICI-
based distributed particle filter (DPF). In contrast to consensus-based
DPFs, our DPF does not require knowledge of the number of sen-
sors; it is hence well suited to networks with a time-varying number
of sensors. Furthermore, the proposed DPF allows for correlated
sensor measurement noises with unknown cross-correlations. Sim-
ulation results for a target tracking problem demonstrated the good
performance of the proposed ICI-based DPF.

APPENDIX: PROOF OF PROPOSITION 1

We define the weighted adjacency matrix [25] W(i)∈ R
K×K by

[W(i)]
k,k′ = ω

(i)
k,k′ for k′ ∈ Ñk and [W(i)]

k,k′ = 0 for k′ ∈

{1, . . . ,K} \ Ñk. Furthermore, W̃(i) ,
∏i

j=1W
(j).

(i) The global estimates x̂
(imax)
k are linear functions of the local esti-

mates x̂k′ , k′ ∈ {1, . . . ,K}:

x̂
(imax)
k = Ĉ

(imax)
k

K∑

k′=1

[
W̃

(imax)
]
k,k′

Ĉ
−1
k′ x̂k′ .

(Note that Ĉ
(imax)
k and W̃(imax) do not depend on the x̂k′ .) Since

the x̂k′ are unbiased by our assumption in Section 2 and a linear
transformation preserves unbiasedness [3, 16], the global estimates

x̂
(imax)
k are themselves unbiased.

(ii) The global estimates x̂
(imax)
k are derived from the local estimates

x̂k′ , k′ ∈ {1, . . . , K} by a sequence of successive CI updates (4).
The local estimates x̂k′ are conservative by our assumption in Sec-
tion 2. It is known [5–7] that a CI update preserves conservativeness.
Hence, this is also true for any sequence of successive CI updates. It

thus follows that the global estimates x̂
(imax)
k are conservative.

(iii) For j ∈ {1, . . . ,M} arbitrary but fixed, let ξ
(i)
k , [γ

(i)
k ]

j
and

ξ(i) , (ξ
(i)
1 · · · ξ(i)K )⊤. From the second equation in (4), we obtain

ξ
(i) = W

(i)
ξ
(i−1) = W̃

(i)
ξ
(0).

The matrix sequence W(i) satisfies the conditions in [26, Assump-

tion 2.1], and thus W̃(∞) = limi→∞ W̃(i) exists and has all rows

identical. Hence, ξ(∞) = W̃(∞)ξ(0) is a vector with identical com-
ponents, i.e., for j ∈ {1, . . . ,M} fixed, each sensor k obtains the

same value of [γ
(∞)
k ]

j
. Since the considered j was arbitrary, we con-

clude that γ
(∞)
k is identical for all k, i.e., γ

(∞)
k = γ(∞). A similar

argument (now setting ξ
(i)
k , [Γ

(i)
k ]

j,j′
and using the first equation

in (4)) shows that also Γ
(∞)
k = Γ(∞) for all k. From (5), we then

conclude that Ĉ
(∞)
k = Ĉ(∞) and x̂

(∞)
k = x̂(∞) for all k.
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