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ABSTRACT

In this paper an analysis is conducted regarding the likelihood func-
tion of an RSSI-based sensor measurement that is affected by a tar-
get of interest (TOI) and an interfering target source. The interferer’s
true location is unknown but is assumed to be Gaussian distributed
with known parameters. This analysis is motivated by its potential
application within a multi-agent distributed tracking system, where
each agent is tasked with tracking a single TOI while treating oth-
ers as sources of interference. By exchanging TOI information, each
agent can use the results established here to effectively compensate
for “out-of-scope” target interference by fusing this external infor-
mation. An exact analytical form is established for the aforemen-
tioned likelihood and a Gaussian approximation is analytically de-
veloped. An application of these results is presented through an
example scenario, with computer simulation results demonstrating
performance.

Index Terms— RSSI-based target tracking, interference model-
ing, multiple particle filtering

1. INTRODUCTION

Received-Signal-Strength-Indicator (RSSI) sensors have attracted
significant attention for use in target localization due to their low
cost, relative ease of implementation, and pervasiveness in existing
wireless sensor networks. Numerous target tracking algorithms that
make specific use of RSSI sensors have been developed, including
[1], [2], [3], and [4]. There is a strong interest in developing algo-
rithms suitable for handling multiple targets, along with the ability
to maintain tracking in the presence of interference. The specific
nature of RSSI-based measurements (namely that each measurement
is additively affected by all existing targets) allows these challenges
to be more effectively addressed within a multi-agent distributed
estimation framework. An algorithm following this concept was
proposed in [5] and further developed in [6].

It is the aim of this paper to study a particular form of the
measurement likelihood function with a standard RSSI model un-
der the assumption that prior information is available regarding the
target that is not directly being tracked. This prior information is
assumed to follow a Gaussian distribution that is communicated
by other agents within the environment. The approach followed is
similar in concept to [7]. However, in that paper ultrasound sensors
were considered and approximations to the likelihood were made
based on maximum likelihood estimates of the interference loca-
tions. The main contributions of this paper are (a) an exact closed
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form solution for the problem considered, (b) analytical approxima-
tions facilitating practical computation, and (c) application of the
presented results to a tracking scenario.

2. PROBLEM FORMULATION

Let us assume that there exists a single TOI moving in a 2D plane
that is described by xt = [xt,1, xt,2, ẋt,1, ẋt,2]> at time t, along
with an interfering target, located at lt, at time t. An RSSI measure-
ment, denoted by yt is taken at time t, and is modeled as,

yt = yxt + ylt + vt

=

(
Φ

‖st − xt,1:2‖α + ε

)
+

(
Φ

‖st − lt‖α + ε

)
+ vt, (1)

where Φ represents the transmitted power, st =
[
s1,t, s2,t

]> is the
position vector of the sensor at time t, α is the path-loss coefficient, ε
is a saturation parameter, yxt and ylt are the respective measurement
contributions from the TOI and the interfering target, and vt repre-
sents the uncorrelated sensor noise. With the assumption that lt ∼

N
(̄
lt,Q

)
where Q =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, we wish to determine an

expression for the probability density fylt
(
ylt | l̄t,Q

)
that would

facilitate computation of the likelihood function fyt
(
yt | xt, l̄t,Q

)
.

Introducing the auxiliary variable θ, one can express the coordinates
of lt as: [

lt,1
lt,2

]
=

(
Φ

ylt
− ε
) 1
α
[
cos θ
sin θ

]
+

[
s1,t

s2,t

]
. (2)

The measurement component ylt can then be rewritten as,

ylt =
Φ(

d>t dt
)α

2 + ε
, (3)

where dt ∼ N
(̄
lt − st,Q

)
. A simple illustration of the model and

defined notation is shown in Fig. 1.

3. EXACT SOLUTION

It is clear that the pair (ylt , θ) maps uniquely to the random vector
lt; thus, an expression for fylt ,θ (ylt , θ | x̄t,Q) can be obtained by

fylt ,θ
(
ylt , θ | l̄t,Q

)
= |J(lt)|lt=l−1

t
flt
(
l−1
t | l̄t,Q

)
, (4)

where l−1
t denotes the value of lt that corresponds to (ylt , θ) as in

(3) and |J(lt)| is the absolute value of the determinant of the Jaco-
bian matrix of the transformation from (ylt , θ) to lt. Due to space
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Fig. 1. RSSI interference target geometry.

limitation, we use the following definition for the remainder of the
paper,

δylt =
Φ

ylt
− ε. (5)

Note that δylt ≥ 0, since ylt is supported on the interval
[
0, Φ

ε

]
. We

can then write

|J(lt)| =

∣∣∣∣∣
∂lt,1
∂ylt

∂lt,1
∂θ

∂lt,2
∂ylt

∂lt,2
∂θ

∣∣∣∣∣
=

∣∣∣∣∣∣
δylt

( 1
α
−1)

(
−Φ
αylt

2

)
cos(θ) −δylt

1
α sin(θ)

δylt
( 1
α
−1)

(
−Φ
αylt

2

)
∈ (θ) δylt

1
α cos(θ)

∣∣∣∣∣∣
=

Φ

αylt
2
δylt

( 2
α
−1).

Writing out the full form of the joint density for a bivariate Gaussian
r.v., we can then express the density of the pair (ylt , θ) as

fylt ,θ
(
ylt , θ | l̄t,Q

)
=

Φ

2πασ1σ2ylt
2
√

1− ρ2
δylt

( 2
α
−1) exp

{
−1

2 (1− ρ2)

×
[

1

σ2
1

(
δylt

1
α cos θ − d̄t,1

)2

+
1

σ2
2

(
δylt

1
α sin θ − d̄t,2

)2

− 2ρ

σ1σ2

(
δylt

1
α cos θ − d̄t,1

)(
δylt

1
α sin θ − d̄t,2

) ] }
. (6)

In order to obtain our desired expression, fylt
(
ylt | l̄t,Q

)
, we must

marginalize the auxiliary variable θ by integrating from 0 to 2π.
While there does not appear to be an exact simple form for this in-
tegral, it has been investigated at lengths under various contexts and
numerous approaches have been identified as in [8], [9], and [10].
A particularly attractive solution appears in [11], which is of closed
form and involves an infinite series of Bessel function products. The
solution is for the case where individual components of the random
vector have different variances, but are uncorrelated. A more general
solution, allowing for nonzero correlation between components, can
be obtained by noting that the argument of the exponential in (6) can

be rewritten as

T1

(
ylt , θ, l̄t,Q

)
=

−1

2 (1− ρ2)

 k1 +

(
k2 −

√
k2

5 + k2
6

)
δylt

2
α

+

(√
k2

3 + k2
4

)
δylt

1
α cos (θ − φ1)

+ 2

(√
k2

5 + k2
6

)
δylt

2
α cos2 (θ − φ2)

 , (7)

where the different parameters are defined as

k1 =
d̄2
t,1

σ2
1

+
d̄2
t,2

σ2
2

− 2ρd̄t,1d̄t,2
σ1σ2

k2 =
1

2

(
1

σ2
1

+
1

σ2
2

)
k3 = 2

(
ρd̄t,2
σ1σ2

− d̄t,1
σ2

1

)
k4 = 2

(
ρd̄t,1
σ1σ2

− d̄t,2
σ2

2

)
k5 =

1

2

(
1

σ2
1

− 1

σ2
2

)
k6 = − ρ

σ1σ2
.

φ1 = atan2
(
k4

k3

)
φ2 =

1

2
atan2

(
k6

k5

)
. (8)

With the argument in this form, we can now make use of the result
derived in [12],∫ 2π

0

einθ exp
[
a cos (θ − α) + 2b cos2 (θ − β)

]
dθ

= 2πebeinα
∞∑

j=−∞

e2ij(α−β)I2j+n (a) Ij (b) , (9)

where i =
√
−1 and Ij(·) is the j-th order Modified Bessel func-

tion of the first kind. Matching the corresponding terms in (9) with
those in the integral we aim to solve, and noting that for j an integer,
I−j (x) = Ij (x), and I2j (−x) = I2j (x), we obtain the final form

fylt
(
ylt | l̄t,Q

)
=

Φδylt
( 2
α
−1)

ασ1σ2

(√
1− ρ2

)
ylt

2
e
−
k1+k2δylt

2
α

2(1−ρ2)

×

 I0

(
−
√
k2

5 + k2
6

2 (1− ρ2)
δylt

2
α

)
I0

(√
k2

3 + k2
4

2 (1− ρ2)
δylt

1
α

)

+ 2

∞∑
j=1

 Ij

(
−
√
k2

5 + k2
6

2 (1− ρ2)
δylt

2
α

)

× I2j

(√
k2

3 + k2
4

2 (1− ρ2)
δylt

1
α

)
cos
(

2j (φ1 − φ2)
) 

 , (10)

with δylt defined in (5), and the rest of the parameters defined in (8).
The shape of fylt

(
ylt | l̄t,Q

)
varies dramatically depending on
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the specific values of the parameters. To demonstrate this and to
provide a rough verification of accuracy (formal convergence proofs
and accuracy bounds will be addressed elsewhere). a comparison be-
tween the truncated-sum approximation to (10), computed with 200
terms, and the empirical histogram (generated by drawing 500,000
samples of lt, each corresponding to a sample of ylt ) are plotted
in Fig. 2 (solid red lines denote the histograms) for three distinct
parameter sets, each denoted by Si and given as

S1 :

l̄t =

[
−0.2
−0.2

]
,

σ1 = 0.5
σ2 = 0.9
ρ = 0.9

 ,

S2 :

l̄t =

[
1.0
0.0

]
,

σ1 = 0.5
σ2 = 0.9
ρ = 0.1

 ,

S3 :

l̄t =

[
1.0
0.0

]
,

σ1 = 2.0
σ2 = 0.9
ρ = −0.5

 .

Note that in all the sets, the other parameters are set to φ = 10,
α = 1.6, and ε = 0.8.
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Fig. 2. Interference component density for various parameter sets.

4. SIMPLIFYING APPROXIMATIONS

A dramatic simplification of (10) can be obtained with the restriction
that ρ = 0 and σ = σ1 = σ2, yielding k5 = k6 = 0. Noting that for
j ≥ 0, Ij(0) = 0 and I0(0) = 1, the expression in (10) then reduces
to

fylt
(
ylt | l̄t,Q

)
=

Φδylt
( 2
α
−1)

ασ2ylt
2

e
− 1

2σ2

(
d̄2t,1+d̄2t,2+δylt

2
α

)

× I0


√
d̄2
t,1 + d̄2

t,2

σ2
δylt

1
α

 . (11)

Assuming the target prior mean is located at some minimum
distance away from the sensor, the constant factor ‖d‖

σ2 , where ‖d‖ is
defined by

‖d‖ =
√
d̄2
t,1 + d̄2

t,2

within the Bessel function argument in (11) will be large, allowing
one to use the large argument approximation for modified Bessel

functions, I0(x) ≈ ex√
2πx

. As a result, (11) can be approximated as

fylt
(
ylt | l̄t,Q

)
≈ φ

ασ
√

2π
δylt

3−2α
2α

exp

[
− 1

2σ2

(
‖d‖ − δylt

1
α

)2
]

ylt
2
√
‖d‖

, (12)

which is valid on the domain of fylt
(
ylt | l̄t,Q

)
,
[
0 ≤ ylt ≤ Φ

ε

]
.

As long as the factor ‖d‖
σ2 is sufficiently large, it can be shown

analytically that this is well approximated by a Gaussian (a simi-
lar approximation can in fact be established with general C), i.e.,
fylt

(
ylt | l̄t,C

)
≈ N (ylt

∗, σ∗) with,

ylt
∗ =

Φ

‖d‖α + ε
σ∗ =

Φασ
(
d̄2
t,1 + d̄2

t,2

)α−1
2((

d̄2
t,1 + d̄2

t,2

)α
2 + ε

)2 . (13)

Before we proceed, we point out that if we have a general C for
the target prior, replacing this with max (σ1, σ2) I can be interpreted
as intentionally ignoring some prior information in favor of a more
conservative prior. The assumption that ‖d‖ >> 0 can be easily
justified in typical tracking conditions.

5. APPLICATION

We now describe a basic scenario demonstrating how the aforemen-
tioned results can be applied. Before doing so, we reiterate that the
results given in equations (10)-(13) are for the contribution ylt to
yt of the interfering target lt only. It is straightforward to derive an
expression for the measurement likelihood,

fyt
(
yt | xt, l̄t,Q

)
= fylt

(
yt − yxt | l̄t,Q

)
∗ fvt (vt) , (14)

where ∗ denotes the convolution operator and it is understood that
yxt is not random here. When the Gaussian approximation given
in (13) is used and assuming vt ∼ N (0, σv), this simplifies to

N
(
yt | yxt + ylt

?,
√

(σ?)2 + σ2
v

)
. When a non-Gaussian form

such as (11) must be used, one can always perform numerical in-
tegration to compute the convolution, which has been found to per-
form well when vt is Gaussian.

Let us now consider a scenario with three mobile sensors (whose
respective measurements are denoted yt,i) that track and follow a
single target obeying the dynamic model,

xt =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

xt−1 + wt,

wt ∼ N


0

0
0
0

 , σ2
w


1
3

0 1
2

0
0 1

3
0 1

2
1
2

0 1 0
0 1

2
0 1


 .

At each point the sensors are positioned equiangularly about a circle
of radius r centered at the predicted target location. Assume there
also exists a single interfering target lt with location at each time
distributed as lt ∼ N

(
st,1 + d, σ2I

)
, i.e., the interference location

is randomly distributed at some constant offset d away from sensor 1
at each time t. Note that this scenario can be representative of a dis-
tributed processing scheme; the given information regarding lt could
have originated from a separate tracker tasked with estimating that
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Fig. 3. Application performance comparison.

target (a true multi-target tracking scenario is not considered here
due to space limitations, see [5] for more details). As in [13], a par-
ticle filter is used to fuse individual sensor measurements and track
the target, operating in the same fashion as described within that pa-
per, with the exception that the particle weights are now computed
as

w
(m)
t ∝ w(m)

t−1

3∏
i=1

fyt,i

(
yt,i | x(m)

t , l̄t,Q
)
, (15)

where x
(m)
t and w

(m)
t respectively denote the mth particle and

weight at time t. Note that even with exact fyt,i (·), this is still
an approximation to the joint likelihood fyt,1:3 (yt,1:3 | ·) since the
individual sensor measurements are no longer independent due to
the interfering target.

This scenario is simulated for three distinct parameter sets,
denoted by Zi and given as

Z1 :

{
d =

[
−1
−1

]
σ = .02

}
Z2 :

{
d =

[
−0
−3

]
σ = .2

}
Z3 :

{
d =

[
−0
−3

]
σ = 2

}
.

The estimation performance of the PF is compared for three different
approaches: using (11) in (14) to compute (15) (labeled as BESSEL),
using the Gaussian approximation in (13) for (14) (labeled as GAUS-
SIAN), and using the approach that was introduced in [5] whereby
the simple approximation lt = l̄t is made to evaluate (14) (labeled
as BASIC). The numerical convolution is performed by representing
fvt(vt) discretely with 500 equally spaced points. The “track-loss
adjusted” RMSE (only trials with error less than 3r are counted in
the RMSE) over 200 trials of the target estimate position norm is
plotted in Fig. 3. In all simulations the remaining model parameters
were set to Φ = 10, α = 2, ε = 0, σv = 0.1, σw = 0.2, and
r = 4. We used M = 200 particles in each filter, resampling was
performed at every time step, and initial particle sets were placed at
the true target location.

Notice that in every case, the performance of the GAUSSIAN
and BESSEL methods were vastly improved over BASIC; with Z2,
BASIC could not maintain tracking for any given trial. It is also
apparent that BESSEL performed much better than GAUSSIAN for
Z3, which is to be expected since with ‖d‖

σ2 = 3
4

the assumption that
fylt

(
ylt | l̄t,Q

)
is Gaussian no longer holds.

6. CONCLUSION

In this paper an exact closed form was presented for the measure-
ment likelihood function of an RSSI sensor following a standard
model, whose measurements are affected not only by the target be-
ing tracked (TOI) but also by an additional “out-of-scope” target
which acts as a source of interference. The underlying assumption
is that Gaussian prior information regarding the interferer’s location
is available, which is communicated to the tracker by another co-
operative agent. Exact analytical solutions were developed and it
was shown that this likelihood function can be adequately approx-
imated by a Gaussian distribution as long as specific conditions on
the parameters are satisfied. A simple application was presented that
can be directly interpreted as an approach to interference compensa-
tion, but which also has significantly deeper implications for a dis-
tributed multi-agent cooperative tracking system. The validity of the
method’s performance was confirmed via computer simulations and
it was demonstrated that the proposed approaches are far superior to
a method previously proposed, even when a Gaussian approximation
to the likelihood function is no longer appropriate.
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[2] Y. Li and P. M. Djurić, “Particle filtering for target tracking
with mobile sensors,” in Acoustics, Speech and Signal Pro-
cessing, 2007. ICASSP 2007. IEEE International Conference
on, 2007, vol. 2, pp. II–1101–II–1104.

1878



[3] G. Blumrosen, B. Hod, T. Anker, D. Dolev, and B. Rubinsky,
“Continuous close-proximity RSSI-based tracking in wireless
sensor networks,” in Proceedings of the 2010 International
Conference on Body Sensor Networks, Washington, DC, USA,
2010, BSN ’10, pp. 234–239, IEEE Computer Society.

[4] A. Oka and L. Lampe, “Distributed target tracking using signal
strength measurements by a wireless sensor network,” Selected
Areas in Communications, IEEE Journal on, vol. 28, no. 7, pp.
1006–1015, 2010.

[5] M. F. Bugallo, T. Lu, and P. M. Djurić, “Target tracking by
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