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ABSTRACT
The problem of parameter identifiability in linear underdeter-
mined models is addressed, where the observed data vectors
follow a multivariate Gaussian distribution. The problem is
underdetermined because the dimension of parameters char-
acterizing the distribution of the data is larger than the dimen-
sion of the observed vectors. Such models arise frequently in
Bayesian Compressive sensing and Sparse Bayesian Learn-
ing problems, where the parameter vector to be estimated, is
assumed to be sparse. We establish explicit conditions for pa-
rameter identifiability in such models, by relating the ambient
dimension of the hyperparameter space and that of the data.
We establish a crucial result that in such underdetermined
models, even without requiring the parameter to be sparse,
it is possible to guarantee unique identifiability of the param-
eters as long as these two dimensions satisfy a certain con-
dition. When such a condition is violated, the unconstrained
statistical model is no more identifiable and additional con-
straints in the form of sparsity need to be enforced to recover
the true parameter.

Index Terms — Parameter Identifiability, Cramer Rao
Bound, Maximum Likelihood Technique, Sparse Bayesian
Learning.

1. INTRODUCTION

Consider a linear underdetermined model
y = Ax0 + n (1)

where A ∈ RM×N is a known measurement matrix and
x0 ∈ RN×1, N � M is a random Gaussian vector with zero
mean and a diagonal covariance matrix Γ0 ∈ RN×N , which
has D < N non zero elements. The noise term n follows
N (0, σ2

nI) and is usually assumed uncorrelated from x. This
model lies at the heart of a family of Bayesian techniques
for Compressive sensing [3], the most popular among them
being Sparse Bayesian Learning (SBL) [1, 2, 4, 5]. SBL com-
putes a MAP estimate of x0 from multiple realizations of
the data y by learning the sparse hyperparameter Γ0 of its
distribution. It provides a Bayesian alternative to the con-
ventional l1 minimization based approaches to sparse signal
reconstruction.

Theoretical analysis of the SBL framework has been the
subject of a number of papers [2, 4, 5]. The problem of hy-
perparameter learning is generally formulated as a Maximum
Likelihood Estimation problem, which is highly non convex.
However, under suitable conditions, SBL can provably re-
cover the true Γ0 when it is sparse [4, 5]. These guarantees
are algorithmic in nature. They firstly establish conditions un-
der which the SBL cost function exhibits unique global mini-
mum at the true parameter value, and then provide guarantees
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that Expectation Maximization (EM) based algorithms can in-
deed converge to the true solution. However, there has been
limited statistical analysis of the SBL framework. In [7], a
Cramer Rao bound analysis for parameter estimation using
the SBL signal model is performed. More recently, a hypoth-
esis testing approach has been proposed in [10], using which
the authors have derived explicit expressions for asymptotic
Mean Squared Error (MSE) of estimation, at least for large
data size.

A common characteristic of the existing results for SBL
is that the guarantees are restricted to the case when the num-
ber (D) of non zero elements satisfies D ≤ M , and they do
not extend easily to the case when D > M . Further, the
problem of parameter identifiability [14] has not been sys-
tematically addressed so far. In this paper, we address this
important question under the common theme of parameter
identifiability in the SBL framework. The primary goal of
most SBL-based approaches is to form a MAP estimate of x0
and the recovery of Γ0 is only a secondary step to achieve
this. We distinguish between these two estimation problems
and explicitly state conditions under which Γ0 is identifiable,
although x0 may not be. We prove that the hyperparameter
Γ0 is identifiable as long as N and M follow an implicit rela-
tion, via the so-called Khatri-Rao product of the measurement
matrix A. We further demonstrate that the Fisher Informa-
tion matrix is non singular in this regime and hence the Maxi-
mum Likelihood (ML) algorithm for hyperparameter learning
asymptotically attains the Cramer Rao Bound and recovers
the true Γ0. The remarkable fact is that in this case, the model
is identifiable for both D ≤ M and D > M , i.e. the level of
sparsity can be potentially larger than the dimension of the
data vectors. However, when the conditions for identifiability
are violated, the FIM becomes singular and the ML algorithm
for SBL can no longer uniquely recover the true Γ0. We show
that in this case, additional constraints on the parameter (such
as sparsity) need to be enforced to uniquely identify the true
solution. To this end, we propose a l1 minimization based
technique to recover the true Γ0 among the multiple global
minima of the SBL objective.

The paper is organized as follows. In Sec. 2, we discuss
parameter identifiability in generic underdetermined models
without explicit sparsity constraints and establish conditions
under which the FIM is non singular. In Sec. 3, we use
these results to evaluate the performance of SBL and derive
explicit relations between the dimensions of hyperparameter
space and the data, such that SBL can provably recover the
true Γ0. When the model becomes non identifiable, it is pos-
sible to use extra information in form of sparsity to recover
the true parameter. Section 4 establishes the validity of our
proposed results via a number of numerical experiments.
Notations: Boldface Uppercase and Lowercase letters respec-
tively represent matrices and vectors. The symbol � rep-
resents Khatri-Rao product whereas ⊗ represent Kronecker
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product. For a matrix A, |A|, Tr(A) and KRank(A) repre-
sent its determinant, trace and Kruskal-Rank respectively.

2. IDENTIFABILITY IN THE NON-SPARSE MODEL

In this section, we consider the linear Gaussian underdeter-
mined observation model given by (1). In our subsequent
analysis, we will assume that σ2

n is known. Our goal is to
study conditions onM,N and A under which it is possible to
estimate unknown parameters Θ0 of the pdf pY(y; Θ) using
the measurement y. Obviously, the parameter Θ to be esti-
mated depends on what we consider unknown in characteriz-
ing the pdf of y. In this regard, we will distinguish between
two cases

1. Type I Estimation: In this case x0 is treated as an
unknown deterministic quantity to be estimated, and
hence Θ = x0. The pdf of y is given by p(I)Y (y) =
N (Ax, σ2

nI). We describe the associated CRB as Type
I CRB or as conditional CRB, as it is more popularly
known [9].

2. Type II Estimation: In this case, we assume x0 to
be a random vector drawn from the multivariate Gaus-
sian distribution N (0,Γ0) (Γ0 being a diagonal ma-
trix). We obtain pY(y) by marginalizing with respect
to the pdf of x0 as

p
(II)
Y (y; Γ0) = N (0,AΓ0AH + σ2

nI) (2)

Naturally, the unknown parameter to be estimated is
given by Θ = Γ0.

2.1. Identifiability and the relations between M and N

The identifiability of a parameter Θ is defined as

Definition 1. (see, for example, [14]) The parameter Θ is
said to be identifiable if pY(y; Θ1) 6= pY(y; Θ2), ∀Θ1 6=
Θ2.

This immediately proves the following lemma for the
Type I estimation problem, by observing when two different
values of x can map to same Ax:

Lemma 1. The parameter x in Type I estimation problem is
non identifiable if N > M .

The observation model for N > M is said to be underde-
termined, reflecting the fact that multiple values of x can lead
to the same y. The non identifiability of x implies that there
exists no consistent estimator for x. However, this underde-
termined model frequently arises in sparse estimation prob-
lems. The problem of identifiability is alleviated in this case
by imposing constraints on the parameter x. In particular, it
is assumed that x is sparse, i.e., only D out of N elements
of x is non zero and typically D ≤ M . Thus the effective
dimension of the non zero components of Θ is reduced by this
assumption, rendering the constrained model identifiable un-
der suitable conditions on A. We will revisit the role played
by sparsity again in Sec. 3.

For underdetermined models (N > M ), a constraint on
the parameter vector Θ (e.g., in the form of sparsity) seems
to be necessary for Type I Estimation to be meaningful.
However, is the same true for Type II estimation, where we
marginalize the unknown x? The answer, surprisingly, is no.
This is proved by the following theorem

Theorem 1. The parameterization given by Γ0 :→ p
(II)
Y (y; Γ0)

is identifiable if N = Rank(A�A).

Proof. If the model given by p(II)Y (y; Γ) is non-identifiable,
then AΓ1A

T = AΓ2A
T for some Γ1 6= Γ2. This can be

rewritten in the vectorized form as
(
A�A

)
(γ1 − γ2) = 0

where γ represents the vector containing the diagonal ele-
ments of Γ. Since N = Rank(A�A), A�A is full col-
umn rank, implying γ1 = γ2, contradicting our assumption
that the model is non identifiable.

Defining AKR , A � A, it has been shown that for
suitable A, Rank(AKR) = O(M2) [13]. Hence N can be
as large as O(M2) and yet, the model remains identifiable.
This result shows that when the parameter of interest is Γ, the
underdetermined model is identifiable even without impos-
ing any sparsity constraint on the unknown parameter. This
serves as an important distinction between Type I and Type II
estimation in the underdetermined model.

2.2. Cramer Rao Bound For the Underdetermined Model
The non-singularity of the Fisher Information matrix plays an
important role in deciding if it is possible to obtain unbiased
estimator of Θ with finite variance from the model pY(y; Θ).
The following theorem establishes the conditions under which
Fisher Information matrix corresponding to p(II)Y (y; Θ) be-
comes singular:

Theorem 2. The Fisher Information matrix J(II)(Γ) charac-
terizing the pdf p(II)Y (y; Γ) is given by

J(II)(Γ) = AT
KR(Ryy

−T ⊗Ryy
−1)AKR

It is singular iff N > Rank(AKR).

Proof. The closed form for the Fisher Information Matrix fol-
lows from the derivations of CRB for uncorrelated sources in
Appendix A of [8]. The matrix Ryy is full rank and hence the
rank of R−T ⊗ R−1 is M2. Hence the rank of J(II)(Γ) ∈
RN×N is equal to the rank of AKR ∈ RM2×N which is rank
deficient iff N > Rank(AKR)

In other words, even for an underdetermined model with
N = O(M2), the Fisher Information matrix continues to be
non singular as long as N = Krank(AKR). The Cramer-Rao
bound thereby exists and imposes a lower bound on the MSE
of any unbiased estimator for Γ0. This also proves the exis-
tence of asymptotically (in the number of observed vectors)
consistent estimators (in particular, the Maximum Likelihood
estimator that asymptotically attains the CRB) in the under-
determined model.

The discussion so far shows that in underdetermined
models, without introducing any constraint on the parameter
space, it is still possible to obtain non-singular unconstrained
FIM. This indicates that an unconstrained Maximum Likeli-
hood Estimator (MLE) can successfully recover the parameter
Γ even when N > M . We now focus on a special class of
algorithms, popularly known as Sparse Bayesian Learning
(SBL) that forms the basis of Bayesian Compressive Sens-
ing [3–6], and evaluate its performance with this newfound
perspective.
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3. WHEN DOES SBL WORK?

Sparse Bayesian learning considers the same signal model as
the Type II estimation problem, however, we assume that the
true Γ0 characterizing the pdf of x0 has only D non zero ele-
ments on its diagonal. This also implies the resulting x0 isD-
sparse. Using the Gaussian prior on x0, it computes a MAP
estimate of x0, which explicitly depends on the hyperparam-
eter Γ0 characterizing the pdf of x0. Since, Γ0 is unknown,
the SBL framework estimates Γ0 as an intermediate step by
solving the Type II ML estimation problem [1, 4] (assuming
L i.i.d realizations of y):

min
Γ

log |AΓAH + σ2
nI|+ 1

L

L∑
l=1

yT
l

(
AΓAH + σ2

nI
)−1

yl (3)

In SBL literature, no discussion so far exists to distinguish
the cases when x0 is identifiable, and when only Γ0 is iden-
tifiable (although x may not be). In fact, the Type II ML
estimate (of Γ0) is used as a crucial intermediate step to com-
pute the MAP estimate of x0 and the sparsity of x0 is solely
determined by the sparsity of Γ0. The performance analysis
of SBL has been the focus of a body of recent work [4, 5].
They establish conditions under which (3) recovers the true
Γ0. However, the standing assumption in all these results
is : D < M . The analysis framework does not easily ex-
tend to the case when D > M . We now aim to understand
the behavior of SBL when D can be potentially much larger
than M , by considering two regimes: N = Rank(AKR) and
N > Rank(AKR):

3.1. The case when M < N = Rank(AKR)

It is to be noted that (3) is the standard ML estimation problem
for Γ and it does not explicitly impose any sparsity enforcing
constraint on Γ. So the performance of (3) can be analyzed
using standard statistical signal processing tools, at least in
the regime when the Fisher Information matrix is non singu-
lar. The following theorem [15] characterizes the asymptotic
performance of the ML estimate, solving (3).

Theorem 3. Suppose the data {yl}Ll=1 is generated from the
pdf (2) characterized by the parameter Γ0 with D out of N
non zero elements. If N = Rank(AKR), then, the solution
ΓML(L) to (3) satisfies:

1. Consistency: limL→∞ ΓML(L) = Γ0

2. Asymptotic Efficiency: Asymptotically in L, ΓML(L) is
unbiased and attains the Cramer-Rao Bound.

The preceding result establishes that ΓML(L) indeed re-
covers the true Γ0 for large L. In particular, it also shows that
the objective in (3) becomes unimodal with L → ∞, as long
as N = Rank(AKR). However, the same cannot be claimed
for finiteL. In fact, for finiteL, the objective in (3), in general,
can have multiple local and global minima and the success of
any algorithm will depend on initial conditions. However,
we now consider a special case where even for finite L, one
can guarantee recovery of the true Γ by a modified version of
(3). The special case assumes XL has orthogonal rows and
absence of noise. A proof can be found in [15]. It is to be
noted [5] also uses a similar assumption on XL to prove that
their implementation of SBL can recover the true Γ0. How-
ever that result only applies to the case D ≤ M . In contrast,
our result holds for D > M as long as N = Rank(AKR)

Theorem 4. [15] Consider the noiseless MMV model YL =
AXL where XL satisfies 1

LXLXH
L = Γ0 where Γ0 is a di-

agonal matrix with D > M non zero elements. Then, Γ0
is the unique minimizer to the following problem provided
N = Rank(AKR):

min
Rank(Γ)≥M

L(L)(Γ) , log |AΓAH |+ 1

L
Tr{(YLYH

L )(AΓAH)−1}

The preceding theorems convey the following important
message:

• Whether or not it is possible to recover sparse support
of size D > M actually depends on the relation of N
and Rank(AKR).

• As long as N = Rank(AKR), it is possible to recover
S, at least for largeL, irrespective of whetherD > M
or D < M .

3.2. The case when N > Rank(AKR)

Recall from Theorem 1 that in this regime, the model de-
scribed by pY(y; Γ0) can be non-identifiable. Hence, even
the limiting log likelihood function L∞(Γ) can exhibit mul-
tiple global minimma. However, it can be verified that any
global minimizer Γ∗ in this case satisfies

AΓ∗AH = AΓ0A
H (4)

Since N > Rank(AKR) there can be, in general, multiple
Γ∗ satisfying (4). This encourages us to use “sparsity” as a
guiding factor to search for the true Γ0 among all Γ∗ that
satisfy (4). For the sake of developing theoretical guarantees,
we assume L → ∞ so that we know the ideal covariance
matrix Ryy. Then, AΓ0A

H = Ryy − σ2
nI. Substituting this

in (4), we can say that all global minima belong to the set:
S∗ = {γ∗ : AKRγ

∗ = vec(Ryy − σ2
nI)}. Hence we can

formulate the following linear program to find the sparsest γ∗
belonging to S∗:

min
x
‖x‖1 s. t. AKRx = vec(Ryy − σ2

nI) (P1SBL)

The following theorem establishes the sufficient condition un-
der which the solution to (P1SBL) recovers the true Γ0:

Theorem 5. If N > Rank(AKR) and D ≤ 1
2KRank(AKR),

the solution x∗ to (P1SBL) satisfies x∗ = vec(diag(Γ0))

We had proposed (P1SBL) and its variations in a series
of our recent work, as a means to perform “Correlation Aware
Sparse Recovery” [13]. We now make an explicit connection
to Sparse Bayesian Learning and justify why (P1SBL) natu-
rally becomes the algorithm of choice when the log likelihood
function in SBL exhibits multiple global minima (i.e. when
N > Rank(AKR), rendering the model non identifiable).
Also, it is to be noted that in the regime N > Rank(AKR),
the sparsityD needs to be upper bounded by the Kruskal rank
of AKR whereas, when N = Rank(AKR), any level of spar-
sity D ≤ N can be identified.
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Fig. 1. Estimated power recovered by MSBL when N =
Rank(AKR) (top), and Vector Representing the True Param-
eter (second from top). Here M = 10, N = 35, D =
15, L = 300. Estimated Power Recovered by MSBL when
N > Rank(AKR) (third from top) and Vector representing
the True Parameter (bottom). Here M = 10, N = 200, D =
15, L = 300.

4. SIMULATIONS

We now conduct numerical examples to show how SBL
(for MMV model) behaves in the two regimes, viz. N =
Rank(AKR) and N > Rank(AKR). We generate A with
i.i.d standard normal entries. We set M = 10 and consider
a sparsity level of D = 15(> M) for these examples. It
can be shown, with probability 1, rank of AKR is N when
N ≤ 0.5(M2 −M) = 45. For the first case, we consider
N = 35 which is less than 45, and so AKR is full column
rank. We also generate L = 300 measurement vectors by
generating xl, l = 1, · · · , L from a multivariate Gaussian dis-
tribution with zero mean and diagonal covariance matrix Γ0
with D = 15 non zero elements all equal to 1. Fig. 1 (second
from top) shows the vector containing the diagonal elements
of Γ0. Fig. 1 (top) shows the corresponding quantity for
Γ∗ which is the solution to the problem (3) using the MSBL
algorithm in [5]. It can be seen that in this case, the SBL
perfectly recovers the true support and Γ∗ provides a very
close estimate of Γ0. Now, let’s increase N to 200 which is
more than the rank of AKR. We plot the corresponding Γ∗

recovered by MSBL in Fig 1 (third from top). It is clear that
SBL fails to recover even the support of the true Γ0. The
estimated Γ∗ in this case is not even sparse and this shows
that SBL can fail when the model is non identifiable (when
N > Rank(AKR)).

In the next experiment, we conduct Monte Carlo simula-
tions to study the performance of MSBL and (P1SBL) and
compare them with relevant Cramer Rao Bounds. We let
M = 10, D = 15 > M and test for two values of N viz.,
N = 40, and N = 100. For N = 40, the SBL algorithm is
guaranteed to recover the true Γ0 for large L. We test the per-
formance by plotting the MSE of MSBL and the Cramer Rao

Bound as a function of L in Fig. 2 For each L, we generate
500 realizations of the signal {xl}Ll=1 and the noise at an SNR
of 0 dB. We compute the MSE defined asE(‖Γ∗−Γ0‖2), av-
eraged over these 500 Monte Carlo runs and plot it in Fig. 2
(left). It can be clearly seen that for large L, the MSBL es-
timate asymptotically approaches the Cramer Rao Bound. It
is to be noted that the sparsity D is larger than the dimension
M of the measurements and yet, SBL is able to successfully
recover the parameter Γ0. We next consider N = 100. In

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

L (Number of Measurement Vectors)

M
SE

 o
f E

st
im

at
ed

 p
ow

er
s

 

 

MSBL
CRB

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

L (number of Measurement Vectors)

M
SE

 o
f E

st
im

at
ed

 P
ow

er
s

 

 
P1SBL
Oracle CRB

Fig. 2. (Left) MSE of MSBL algorithm and the corresponding
unconstrained Cramer Rao Bound, plotted as a function of L.
Here M = 10, N = 40, D = 15. (Right) MSE of (P1SBL)
and the Oracle Cramer Rao Bound, plotted as a function of L.
Here M = 10, N = 200, D = 15.

this regime the MSBL algorithm fails to identify the true Γ0
owing to non identifiability. However, since D < 45, the
(P1SBL) algorithm is able to recover the true Γ0, especially
for large L. For finite L, the equality constraint in (P1SBL) is
not quite valid and hence we employ a LASSO implementa-
tion of (P1)SBL). Also, the unconstrained FIM is singular in
this regime and the Cramer Rao Bound is not defined. Hence,
we resort to the so called “Genie-aided” or “Oracle” Cramer
Rao Bound [12], which is computed given the side informa-
tion that the support S is known. In Fig. 2 (right) we plot the
MSE of (P1SBL) and the Oracle CRB as a function of L. It
can be seen that the MSE of (P1SBL) decreases with L and
comes closer to the Oracle CRB. However, it is not clear if
there is a gap between the two curves even in the asymptotic
regime. In future, it will be interesting to establish guarantees
to show how closely the LASSO implementation of (P1SBL)
approaches Oracle CRB for a givenM andN , as L increases.

5. CONCLUSION

We have shown that the Type II ML estimation which lies at
the centre of SBL framework, successfully recovers the true
Γ0 as long as N = Rank(AKR), even when the sparsity D
is larger than M . However, when N > Rank(AKR), the
parametric model becomes non identifiable and the ML es-
timation stage fails. However, the SBL algorithm as imple-
mented as an iterative EM algorithm in [5] might still suc-
cessfully recover Γ0 in some cases. This can happen when
the initial point is well chosen and/or when an intermediate
pruning/thresholding stage [6, 10, 11] is used, which is dif-
ferent from just solving (3). In future, we aim to thoroughly
study the effect of pruning in the regime N > Rank(AKR)
and D > M [15].
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