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ABSTRACT
In this paper, Bayesian quickest change-point detection prob-
lem with a stochastic energy constraint is considered. This
work is motivated by applications of renewable energy pow-
ered wireless sensor networks. In particular, a renewable en-
ergy powered wireless sensor is deployed to detect the change
in the probability distribution of the observation sequence.
The energy in the sensor is consumed by taking observations
and is replenished randomly. The sensor cannot store extra
energy if its battery is full and cannot take observations if it
has no energy left. Hence, the sensor needs to use its energy
efficiently. Our goal is to design a power allocation scheme
and a detection strategy to minimize the average detection de-
lay while keeping a low false alarm probability. We show
that this problem can be written into a set of iteratively de-
fined functions and then solved by the tools from the optimal
stopping theory. It turns out that the optimal solution has a
very complex structure. For practical applications, we pro-
pose a low complexity algorithm, in which the sensor adopts
a greedy power allocation scheme with a threshold detection
rule. We show that this algorithm is first order asymptotically
optimal as the false alarm probability goes to zero.

Index Terms— Bayesian quickest change detection; en-
ergy harvested sensor; stochastic energy constraint; sequen-
tial detection.

1. INTRODUCTION

Quickest change-point detection problem aims to detect the
abrupt change in probability distribution of a random se-
quence as quickly and reliably as possible [1, 2, 3, 4]. This
technique has found a lot of applications in wireless sensor
networks [5, 6, 7, 8, 9, 10] for network intrusion detection
[11], seismic sensing, structural health monitoring, etc. The
sensor networks powered by renewable energy have attracted
considerable interests in recent years. In such networks, each
sensor can harvest energy from the ambient environment
hence it has unlimited life span. However, the stochastic
nature of the energy replenishing process also brings power
management challenges. In this paper, we focus on the design
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of the optimal power allocation strategy for the renewable en-
ergy powered sensor network when the detection delay is of
interest.

In particular, we extend the classic Bayesian quickest
change detection problem, which was first studied by A.
Shiryaev [1, 2], by imposing a stochastic energy constraint.
In the classic setup, there is no energy constraint and the
sensor can take observations at every time slot. In this paper,
we extend this problem to sensors that are powered by re-
newable energy. In this case, the energy stored in the sensor
is replenished by a random process and consumed by taking
observations. The sensor cannot store extra energy if the bat-
tery is full, and the sensor cannot take observations if there is
no energy left. Hence, the sensor cannot take observation at
every time instant anymore. Since the energy collected by the
harvester in each time instant is not a constant but a random
variable, this brings new optimization challenges.

There have been some existing works on the quickest
change-point detection problem that take the observation
cost into consideration. [12] considers the Bayesian quickest
change-point detection problem with sample right constraints
in the continuous time scenario. [13] considers the Bayesian
quickest detection with observation cost, which assumes that
each observation is worth either 1 if it is observed or 0 if
it is skipped. Compared with [12, 13], our paper focuses
on the discrete time case, and provides a low complexity
asymptotically optimal solution as well as the optimal so-
lution. [14] considers the non-Bayesian quickest detection
with a stochastic sampling right constraint. [11] considers
the design of detection strategy that strikes a balance between
the detection delay, false alarm probability and the number
of sensors being active for a multiple sensor network. [15]
and [16] take the average number of observations taken be-
fore the change-point into consideration, and they provide
the optimal solutions along with low-complexity but asymp-
totically optimal rules for Bayesian setup and non-Bayesian
setup respectively. [17] is a recent survey about the quickest
change-point detection problem.

The remainder of the paper is organized as follows. The
mathematical model is given in Section 2. Section 3 and Sec-
tion 4 present the optimal solution and the asymptotically op-
timal solution, respectively. Numerical examples are given in
Section 5. Section 6 offers concluding remarks. Due to space
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limitations, we present only main ideas and conclusions. De-
tails of proofs can be found in [18].

2. PROBLEM FORMULATION

We consider a random sequence {Xk, k = 1, 2, . . .} with a
geometrically distributed change-point τ such that X1, X2, . . . ,
Xτ−1 are independent and identically distributed (i.i.d.) with
probability density function (pdf) f0 while Xτ , Xτ+1, . . . are
i.i.d. with pdf f1. The distribution of the change-point τ is
given as

P (τ = t) =

{
π if t = 0

(1− π)(1− ρ)t−1ρ if t = 1, 2, . . .
. (1)

We use Pπ to denote the probability measure under which τ
has above geometric distribution, and use Eπ to denote the
expectation with respect to Pπ .

At each time slot, the energy arrives randomly to the en-
ergy harvested wireless sensor. Let ν = {ν1, ν2, . . . , νk, . . . }
denote the energy arriving process, where νk is the amount
of energy arrived at time slot k. Specially, νk ∈ V =
{0, 1, 2, . . .}, in which {νk = 0} means that the energy har-
vester collects nothing at time slot k and {νk = i} means
that the energy harvester collects i units of energy at time slot
k. We use pi = P ν(νk = i) to denote its probability mass
function (pmf). νk’s are i.i.d. over k.

The wireless sensor can decide how to allocate these col-
lected energies. Let µ = {µ1, µ2, . . . , µk, . . . } denote the
energy utility process with µk ∈ {0, 1}. {µk = 1} means
that the wireless sensor spends a unit of energy on taking ob-
servation at time slot k, while {µk = 0} means that no energy
is spent at time slot k and hence no observation is taken.

We assume that the wireless sensor has a battery with fi-
nite capacity C. Denote Ek as the amount of energy left in the
battery at the end of time slot k. Then, Ek evolves according
to

Ek = min{C,Ek−1 + νk − µk}, k = 1, 2, . . . , (2)

and E0 = E is the energy initially stored in the battery. The
energy utility process must obey the causality constraint: the
energy cannot be used before it is harvested. The energy
causality constraint can be represented as

Ek ≥ 0, k = 1, 2, . . . . (3)

Let U be the admissible strategy set, which contains all the
strategies satisfied with (3).

Let {Zk, k = 1, 2, . . .} denote the observation sequence
obtained by the sensor, in which

Zk =

{
Xk if µk = 1
ϕ if µk = 0

. (4)

The observation sequence {Zk} generates the filtration {Fk}
with

Fk = σ({τ = 0}, Z1, · · · , Zk), k = 1, 2, . . . ,

and F0 contains the sample space Ω and {τ = 0}.
We notice that the distribution of Zk is related to both

Xk and µk. Unlike the classic Bayesian setup which only
considers the probability measure Pπ, we should take both
Pπ and P ν into consideration since both of them affect the
distribution of Zk. Hence, in our problem setup, we use the
superscript ν over the probability measure and the expecta-
tion, i.e. P ν

π and Eν
π , to emphasize that we are working with

a probability measure taken the distribution of the process ν
into consideration.

The sensor aims to detect the change as soon as it occurs.
Let T be the set of all finite stopping times with respect to
{Fk}. A stopping time T ∈ T will decide when the sensor
should stop taking observations and declare that the change
has occurred. A false alarm occurs if T < τ . Our goal is to
minimize the average detection delay (ADD) subjected to a
false alarm constraint. Specially, we want to solve the follow-
ing optimization problem:

min
µ∈U,T∈T

Eν
π[(T − τ)+] subject to P ν

π (T < τ) ≤ α, (5)

where α is a constant characterizing the probability of false
alarm (PFA). By Lagrangian multiplier, for any given α ∈
(0, 1), we can define a cost function

L(π,E, T, µ) = Eν
π[1{T<τ} + c(T − τ)+] (6)

for some proper chosen c such that the optimization problem

J(π,E) = inf
µ∈U,T∈T

L(π,E, T, µ) (7)

is equivalent to (5).

3. OPTIMAL SOLUTION

In this section, we study the optimal solution for the proposed
problem. Let πk be the posterior probability that a change has
occurred at the kth time instant, namely,

πk = P ν
π (τ ≤ k|Fk), k = 0, 1, . . . . (8)

It is easy to see π0 = π. Using the Bayes’ rule, πk can be
shown to satisfy the following recursive formula

πk =

{
Φ0(πk−1) if µk = 0
Φ1(Zk, πk−1) if µk = 1

, (9)

in which

Φ0(πk−1) = πk−1 + (1− πk−1)ρ

and

Φ1(Zk, πk−1) =
Φ0(πk−1)f1(Zk)

Φ0(πk−1)f1(Zk) + [1− Φ0(πk−1)]f0(Zk)
.

The cost function (6) can be converted into an expression
in terms of πk.
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Proposition 3.1. For any arbitrary power allocation µ ∈ U ,

L(π,E, T, µ) = Eν
π

[
1− πT + c

T−1∑
k=1

πk

]
. (10)

This problem can be solved by backward induction. In
particular, we first consider a finite horizon problem with a
horizon N , that is, we consider the case that the sensor must
claim a stop at a time no later than N . We define

JN
k (πk, Ek) = inf

µN
k+1∈UN

k+1,T∈T N
k

L(πk, Ek, T, µ
N
k+1)

with

L(πk, Ek, T, µ
N
k+1) = Eν

πk

[
1− πT + c

T−1∑
i=k

πi

]
,

in which µN
k = {µk, µk+1, . . . , µN} is the power allocation

strategy adopted by the sensor from k to N , UN
k = {µN

k :
Ei ≥ 0, i = k, . . . , N}, and T N

k = {T ∈ T : k ≤ T ≤ N}.
By setting k = 0, JN

0 (π,E) is the cost function for the finite
horizon problem with a horizon N .

We introduce a set of iteratively defined functions. Let

V N
N (πN , EN ) = 1− πN ,

and for k = N − 1, N − 2, . . . , 0, we define

WN
k+1(πk, Ek, νk+1)

= min
{
Eν
πk
[V N

k+1(πk+1, Ek+1)|νk+1, µk+1 = 0],

Eν
πk
[V N

k+1(πk+1, Nk+1)|νk+1, µk+1 = 1]
}
,

V N
k (πk, Ek)

= min{1− πk, cπk + Eν [WN
k+1(πk, Ek, νk+1)]}.

This set of functions convert the original problem into a
Markov stopping problem:

Lemma 3.2. For all k = 0, 1, . . . , N , we have

JN
k (πk, Ek) = V N

k (πk, Ek).

Furthermore, the optimal sampling strategy is given as

µ∗
k = argmin

µk∈{0,1}
Eν
πk−1

[V N
k (πk, Ek)|νk, µk].

The optimal stopping rule is given as

T ∗ = inf {0 ≤ k ≤ N : 1− πk ≤ cπk

+Eν [WN
k+1(πk, Ek, νk+1)]

}
.

Remark 3.3. We give a heuristic explanation of the iterative
functions WN

k+1, V N
k and Lemma 3.2. In each time slot, the

sensor needs to make two decisions: the sampling decision
µk and the terminal decision δk. Both decisions affect the

cost function, however these two decisions are based on dif-
ferent information. In particular, the sensor decides whether
to take an observation or not at time slot k after knowing how
much energy has been collected at time slot k. Hence, µk is
a function of νk, πk−1 and Ek−1. When µk is decided, the
sensor could determine the way that πk and Ek evolve, and
hence the decision δk is a function of πk and Ek. Actually, the
iterative function V N

k is the cost function associated with δk,
and WN

k is that associated with µk. At the end of time slot k,
the sensor could choose either to stop, which costs 1− πk, or
to continue. Since µk+1 is the next decision after δk, the fu-
ture cost in V N

k is Eν [WN
k+1]. On the other hand, since δk+1

is the decision after µk+1, hence the sensor chooses µk+1

based on the rule that the future cost is minimized, that is the
conditional expectation of V N

k+1 is minimized, which leads the
expression of WN

k+1. Since the decision δk is made at the end
of time slot k, V N

k and JN
k coincide.

In the following, we use a limit argument to extend the
above conclusion to the infinite horizon problem. Since
V N
k (πk, Ek) ≥ 0 and

V N+1
k (πk, Ek) ≤ V N

k (πk, Ek),

which is true due to the fact that all strategies admissible for
horizon N are also admissible for horizon N +1, the limit of
V N
k (πk, Ek) as N → ∞ exists. Furthermore, as πk and Ek

are homogenous Markov chains, the form of the limit function
is the same for different values of k, which we define as

V (πk, Ek) = lim
N→∞

V N
k (πk, Ek).

Similarly, we have

W (πk, Ek, νk+1) = lim
N→∞

WN
k+1(πk, Ek, νk+1).

Hence, we have the following conclusion for the infinite hori-
zon problem.

Theorem 3.4. The optimal sampling strategy is given as

µ∗
k = argmin

µk∈{0,1}
Eν
πk−1

[V (πk, Nk)|νk, µk]. (11)

The optimal stopping rule is given as

T ∗ = inf {k ≥ 0 : 1− πk ≤ cπk

+Eν [W (πk, Nk, νk+1)]} . (12)

4. ASYMPTOTICALLY OPTIMAL SOLUTION

The optimal solution derived in Section 3 has a very complex
structure. To facilitate practical applications, we propose a
low complexity algorithm, and we show it is asymptotically
optimal when the PFA goes to zero. The proposed algorithm
is given as

µ̃k =

{
1 if Ek−1 + νk ≥ 1
0 if Ek−1 + νk = 0

, (13)
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and

T̃ = inf{k ≥ 0|πk ≥ 1− α}. (14)

That is, the sensor adopts a greedy energy utility strategy,
in which the sensor spends energy on taking observations as
long as the battery is not empty, and a threshold detection rule.
We simply denote this strategy as (µ̃, T̃ ).

The asymptotic optimality of (µ̃, T̃ ) is revealed in the fol-
lowing two theorems. We first derive a lower bound on the
ADD for any power allocation scheme and detection strategy:

Theorem 4.1. As α → 0,

inf
µ∈U,T∈T

Eν
π[(T − τ)+]≥ | logα|

p̃D(f1||f0)+| log(1−ρ)|
(1+o(1)),

where D(f1||f0) is the Kullback-Leibler (KL) divergence of
f1 and f0, and p̃ , Eν [µ̃].

This lower bound can be obtained by (µ̃, T̃ ):

Theorem 4.2. (µ̃, T̃ ) is asymptotically optimal as α → 0.
Specifically,

Eν
π[(T̃ − τ)+] =

| logα|
p̃D(f1||f0) + | log(1− ρ)|

(1 + o(1)).

5. NUMERICAL SIMULATION

In this section, we give two numerical examples to illus-
trate the results obtained in our paper. In these numerical
examples, we assume that the pre-change distribution f0 is
N (0, σ2) and the post-change distribution f1 is N (0, P+σ2).
The signal-to-noise ratio is defined as SNR = 10 logP/σ2.
The geometrically distributed change-point has parameters
π0 = 0.15 and ρ = 0.01.

In the first scenario, we illustrate the relationship between
the ADD and the PFA with respect to different p̃. In this sim-
ulation, we set V = {0, 1} and E0 = 0. Then µ̃ is simplified
into an immediate power allocation, i.e., the sensor spends
the energy on taking observation immediately when it obtains
an energy from the environment. Hence we have p̃ = p1 in
this case. The simulation result for SNR = 0dB is shown in
Figure 1. In this figure, the blue line with circles is the simu-
lation result for p1 = 0.2, the green line with stars and the red
line with squares are the results for p1 = 0.5 and p1 = 0.8,
respectively. The black dash line is the performance of the
classic Bayesian problem, which is served as a lower bound
because the sensor can take observation at every time slot. As
we can see, for a given α, the detection delay is in inverse
proportion to p̃. The larger p̃ is, the closer is the performance
to the lower bound.

In the second simulation, we examine the asymptotic opti-
mality of (µ̃, T̃ ). In the simulation, we set C = 3, E0 = 2 and
we assume that the amount of arrived energy is taken from
the set V = {0, 1, . . . , 4}. We set p0 = 0.85, p1 = 0.1,
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Fig. 1. ADD vs. PFA under different p̃

p2 = 0.03, p3 = 0.01, p4 = 0.01, and one can find p̃ =
0.3610 under this setting. Furthermore, we set σ2 = 1 and
SNR = 5dB. The simulation result is shown in Figure 2.
In this figure the red line with squares is the performance of
the proposed strategy (µ̃, T̃ ), and the black dash line is calcu-
lated by | logα|/(p̃D(f1||f0)+ | log(1−ρ)|). As we can see,
along all the scales, these two curves are parallel to each other,
which confirms that the proposed strategy, (µ̃, T̃ ), is asymp-
totically optimal as α → 0 since the constant difference can
be ignored when the detection delay goes to infinity.
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Fig. 2. ADD vs. PFA under strategy (µ̃, T̃ )

6. CONCLUSION

In this paper, we have studied the Bayesian quickest detection
problem with a casual energy constraint. We have charac-
terized the optimal solution, which unfortunately has a very
high complexity. For practical applications, we have pro-
posed a low complexity algorithm, in which the sensor adopts
an greedy power allocation with a threshold detection rule.
We have shown that this simple algorithm is first order asymp-
totically optimal as the PFA goes to zero.
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