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ABSTRACT
The phase retrieval problem has a long history and is an im-
portant problem in many areas of optics. Theoretical under-
standing of phase retrieval is still limited and fundamental
questions such as uniqueness and stability of the recovered
solution are not yet fully understood. This paper provides sev-
eral additions to the theoretical understanding of sparse phase
retrieval. In particular we show that if the measurement en-
semble can be chosen freely, as few as 4k− 1 phaseless mea-
surements suffice to guarantee uniqueness of a k-sparse M -
dimensional real solution. We also prove that 2(k2 − k + 1)
Fourier magnitude measurements are sufficient under rather
general conditions.

Index Terms— Phase retrieval, complement property,
compressive phase retrieval.

1. INTRODUCTION

In many areas in optics, physical limitations make it impos-
sible to measure the phase. If the signal is real, then the sign
is lost and if the signal is complex, the phase. Even though
the phase is not measured, it often contains valuable infor-
mation. For example, in X-ray crystallography [1, 2], only
the magnitude of the Fourier transform is observed. If the
phase would be observable, then the inverse Fourier transform
would directly give the atomic structure of the crystal consid-
ered. Therefore the phase has to be retrieved before structural
information can be explored.

The problem of retrieving the phase from intensity mea-
surements is often referred to as the phase retrieval problem.
The problem is by nature often ill-posed and early methods
relied on additional information about the sought signal, such
as band limitation, nonzero support, and nonnegativity to suc-
cessfully recover the signal. The Gerchberg-Saxton algorithm
is one of the popular methods for recovery. It utilizes a prior
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on the support and alternates between the Fourier and inverse
Fourier transforms to obtain a phase estimate from a set of
Fourier magnitude measurements [3, 4]. A more recent de-
velopment [5, 6, 7] has shown that e.g., random collections of
measurement vectors are rich enough to provide a well posed
phase retrieval problem.

There has also been recent interest in sparse phase re-
trieval. In contrast to the literature on compressive sensing,
which assumes a linear relation between measurements and
the sparse unknown and is quite mature, the literature on
sparse phase retrieval is still developing. Recent work has
demonstrated that as in the case of linear measurements, the
number of intensity measurements required to recover the
true solution can be reduced by taking into account that the
sought signal is sparse [8, 9, 10, 11, 12, 7, 13].

Even though [5, 6, 7] showed that there exist collections of
measurement vectors that provide accurate phase estimates, it
is still not fully understood what properties these sets need to
satisfy for the phase retrieval map to be injective. The first
attempt to try to characterize these properties was given in
[14] (later refined in [15]). In particular the authors derived
necessary and sufficient conditions for injectivity for a real
signal and real collection of measurement vectors. Injectivity
in the real case was also discussed in [7]. For the complex
case (complex signal and complex collection of measurement
vectors), [15] gave necessary conditions for injectivity.

As for sparse phase retrieval, it was shown in [7] that
O(k log(M/k)) real measurement vectors are sufficient for
stable recovery of a k-sparseM -dimensional real signal. This
means that the number of measurements needed for recovery
from quadratic measurements is the same, up to a multiplica-
tive scalar, as for linear measurements. The work in [16] ex-
tended results presented in [14] and derived bounds on the
number of measurements needed for unique recovery in the
sparse real case (real measurement vectors and real sparse sig-
nal) and for the complex sparse case (complex measurement
vectors and complex sparse signal). For a k-sparse signal,
4k− 1 measurements were reported sufficient in the real case
and 8k − 2 in the complex case. However, no concrete char-
acterization of the properties that lead to a unique recovery
was given in [16]. In [17] the authors discuss sparse recovery
from Fourier magnitude measurements and show that, under
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general conditions, the sought signal is uniquely defined by
the magnitude of the full Fourier transform.

The contribution of the current paper is twofold. We
first give properties leading to unique recovery for sparse
signals. In particular we show that only 4k − 1 phaseless
measurements suffice to guarantee uniqueness of a k-sparse
M -dimensional real solution while 2M−1 measurements are
required for a generalM -dimensional real solution. Note that
[16] also showed that 4k− 1 phaseless measurements suffice.
However, the authors did not provide any condition for when
this is sufficient. Secondly we consider the important case
of sparse recovery from Fourier magnitude measurements.
We show that under rather mild conditions, 2(k2 − k + 1)
Fourier magnitude measurements guarantee uniqueness. This
improves on [17] which only considered recovery from a full
Fourier ensemble, namely, M measurements.

2. THE PHASE RETRIEVAL PROBLEM

Define Φ as a collection of measurement vectors Φ =
{ϕn}Nn=1 ∈ RM (or CM ) and consider the problem of re-
trieving a vector x from N intensity measurements

yn = |〈ϕn,x〉|2, n = 1, . . . , N. (1)

This problem is referred to as the phase retrieval problem.
Introduce the operatorA as (A(·))(n) = |〈ϕn, ·〉|2. Note that
if A : CM → RN then A(x) = A(cx), c ∈ C, |c| = 1, and
if A : RM → RN then A(x) = A(−x). The map A(·) is
hence not injective and x can never be uniquely defined more
than up to a global unit complex scalar if x is complex and
a global sign change if x is real. Therefore, when referring
to a unique solution and injectivity, it is always understood
that it is either up to a unit complex scalar or a global sign
change. We henceforth consider the map A : CM/T → RN
(where T is the complex unit circle) if x is complex and A :
RM/{±1} → RN if x is known to be real.

As shown in [14, 15], the complement property is particu-
larly useful when considering the theory of phase retrieval.

Definition 1 (Complement property [14, 15]). We say that
Φ = {ϕn}Nn=1 ∈ RM (CM ) satisfies the complement property
if for every S ⊆ {1, . . . , N}, either {ϕn}n∈S or {ϕn}n∈Sc

span RM (CM ). Here Sc = {n : n ∈ {1, . . . , N}, n /∈ S}.

2.1. Real Measurement Vectors and a Real Signal

Using the complement property, the following theorem on the
injectivity of intensity measurements using a real collection of
measurement vectors was shown in [15]:

Theorem 1 (Injectivity in the real case (Thm. 3 of [15])). Let
A : RM/{±1} → RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ RM , n = 1, . . . , N. (2)

Then A is injective iff Φ = {ϕn}Nn=1 ∈ RM satisfies the
complement property.

It is now easy to show that 2M−1 intensity measurements
are necessary forA to be injective. This bound was also given
(without a proof) in [15].

Corollary 2. To satisfy the complement property we must
haveN ≥ 2M−1 intensity measurements. AnyN < 2M−1
intensity measurements do not provide an injective map A.

Proof. From Theorem 1 it is sufficient to show that N <
2M − 1 vectors can never satisfy the complement property.
By definition, Φ satisfies the complement property if either
{ϕn}n∈S or {ϕn}n∈Sc span RM for any S ⊆ {1, . . . , N}.
Take S∗ ⊆ {1, . . . , N} to be any arbitrary set such that
|S∗| = M − 1. In this case |S∗c| = N − M + 1 <
2M − 1 − M + 1 = M if N < 2M − 1. Since both
|S∗| < M and |S∗c| < M , neither {ϕn}n∈S∗ or {ϕn}n∈S∗c

span RM .

It can easily be verified that 2M − 1 measurement vec-
tors independently drawn from e.g., an M -dimensional stan-
dard Gaussian distribution (zero mean, unit variance) satisfy
the complement property with probability 1. According to
Theorem 1 it is hence possible to uniquely recover an M -
dimensional real signal from 2M−1 intensity measurements.

2.2. Complex Measurement Vectors and a Complex Sig-
nal

Let us now consider the complex case, when the measurement
vectors are complex and x ∈ CM . It was recently shown in
[15] that the complement property is a necessary condition
for injectivity in this case.

Theorem 3 (Injectivity in the complex case (Thm. 7 of [15])).
Let A : CM/T→ RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ CM , n = 1, . . . , N. (3)

If A is injective then Φ = {ϕn}Nn=1 ∈ CM satisfies the com-
plement property.

It is easy to verify that the complement property is only
necessary and not sufficient for injectivity. An example of
a set of measurement vectors that satisfies the complement
property but does not provide an injective map is given in
[15]. It was conjectured (but not proven) in [15] that 4M − 4
generic (see [15] for definition) measurements are both nec-
essary and sufficient for unique recovery.

3. UNIQUENESS IN SPARSE PHASE RETRIEVAL

We now build on previous results and generalize them to the
analysis of sparse phase retrieval. We start by studying a col-
lection of real measurement vectors and then extend the re-
sults to an important class of complex measurement vectors,
a partial Fourier basis, in Section 3.2.
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3.1. Real Measurement Vectors and a Sparse Real Signal

To handle sparse signals, it is convenient to introduce the fol-
lowing less restrictive version of the complement property:

Definition 2 (k-complement property). We say that Φ =
{ϕn}Nn=1 satisfies the k-complement property if for every
S ⊆ {1, . . . , N} and subset K ⊆ {1, . . . ,M}, |K| = k, ei-
ther {ϕn,K}n∈S or {ϕn,K}n∈Sc span Rk. The notation ϕn,K
denotes the elements indexed by K of the nth measurement
vector ϕn.

The k-complement property reduces to the complement
property of Definition 1 when k = M . If k < M then the
k-complement property is less restrictive. Furthermore, if Φ
satisfies the k-complement property then it also satisfies the
(k − 1)-complement property.

We are now ready to state the following theorem on
unique recovery of a k-sparse real signal:

Theorem 4 (Unique recovery in the sparse real case). Let
A : RM/{±1} → RN be defined by

(A(x))(n) = |〈ϕn,x〉|2, ϕn ∈ RM , n = 1, . . . , N, (4)

and assume that we are given y = A(x0) ∈ RN . If A sat-
isfies the 2‖x0‖0-complement property, then x0 is the unique
real vector satisfying the given measurements with ‖x0‖0 or
fewer nonzero elements. Thus, x0 can be found as the solution
to

x0 = arg min
x∈RM

‖x‖0 s. t. y = A(x). (5)

Proof. We prove the theorem by contradiction. Assume that
x̃ 6= ±x0, ‖x̃‖0 ≤ ‖x0‖0, y = A(x̃) = A(x0), x̃ ∈ RM .
Theorem 1 gives that if Φ associated with A satisfies the
2‖x0‖0-complement property, then {|〈ϕn,K , ·〉|2}Nn=1 is in-
jective for all subsets K ⊆ {1, . . . ,M}, |K| = 2‖x0‖0.
Let K∗ ⊆ {1, . . . ,M}, |K∗| = 2‖x0‖0, be an index set
that includes the support of x0 and x̃. Note that ‖x̃‖0 +
‖x0‖0 ≤ 2‖x0‖0 = |K∗|. Then {|〈ϕn,K∗ ,x0,K∗〉|2}Nn=1 =
{|〈ϕn,K∗ , x̃K∗〉|2}Nn=1 = y. Since {|〈ϕn,K , ·〉|2}Nn=1 is
injective for all subsets K ⊆ {1, . . . ,M} of size |K| =
2‖x0‖0, it must also be injective for K∗. We therefore con-
clude that x̃K∗ = x0,K∗ which implies that x̃ = ±x0 since
K∗ includes the support of both vectors.

For a sufficiently sparse x, unique recovery can hence be
guaranteed from fewer measurements than in the dense case.
We give this result as a corollary:

Corollary 5. A collection of min(4k− 1, 2M − 1) measure-
ment vectors suffice to uniquely recovery any k-sparse x.

Before proving the corollary, we state the following
lemma:

Lemma 6. A set of 4k − 1 independent samples from an M -
dimensional standard Gaussian distribution satisfies the 2k-
complement property with probability 1.

Proof of Lemma 6. Generate the collection of measurement
vectors by independently drawing 4k− 1 samples from a M -
dimensional standard Gaussian distribution. Introduce Φ as
the M × (4k − 1)-matrix obtained by arranging the 4k − 1
vectors of Φ into a matrix. Let ΦK,S be the |K| × |S|-matrix
obtained by picking out the rows indexed in K and columns
indexed by S.

Consider the probability that Φ does not satisfy the 2k-
complement property:

P (E) = P
(
∃S,K : S ⊂ {1, . . . , 4k − 1}, |K| = 2k,

λmin(ΦK,SΦ
∗
K,S) = λmin(ΦK,ScΦ∗K,Sc) = 0

)
,

where λmin denotes the smallest eigenvalue. We now use
Boole’s inequality for unions of events

P (E)

≤
4k−1∑
s=1

(
4k − 1

s

)(
M
2k

)
P
(
a2k×s-submatrix of Φ has row-rank<2k

)
·P
(
a 2k×(4k − 1− s)-submatrix of Φ has row-rank<2k

)
= 0,

where we used thatP (a 2k×s-submatrix of Φ has row-rank <
2k
)

= 0 when s ≥ 2k and P (a 2k×(4k−1−s)-submatrix of
Φ has row-rank<2k

)
= 0 when s < 2k, which follow from

the Gaussianity of the entries of the submatrices.

Proof of Corollary 5. First, since 2M − 1 measurements are
enough in the dense case, this provides an upper bound on the
number of measurements. Second, Theorem 4 gives that y =
A(x) has a unique k-sparse solution for min(4k−1, 2M−1)
measurements if the collection satisfies the 2k-complement
property. Finally we have from Lemma 6 that such a
collection exists since a set of 4k − 1 samples from an
M -dimensional unit Gaussian distribution satisfies the 2k-
complement property with probability 1.

3.2. Complex Measurement Vectors and Real Signal:
Fourier Magnitude Measurements

A particularly interesting set of complex measurement vectors
is the incomplete Fourier basis. This special case is of great
importance since Fourier magnitude measurements (FMMs)
are inherent in applications such as X-ray crystallography [1,
2], speckle imaging and blind channel estimation [17].

A complication in dealing with FMMs is that some prop-
erties are entirely embedded in the phase of the Fourier trans-
form and therefore lost in the measuring process. In addition
to the global sign shift previously discussed, we therefore in-
clude mirroring (reverse the ordering of the elements in x)
and shifts (circularly shift the elements in x) in the set of in-
variances T from here on.

Before discussing the results, note that even if a Fourier
basis may satisfy some complex equivalent of the k-complement
property, this is not enough to provide uniqueness up to the
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invariances of T. This was shown in [18] by giving an ex-
ample of two signals, not equivalent with respect to T, with
the same autocorrelation. Such signals can thereby never be
uniquely specified by the magnitude of their Fourier trans-
forms. The k-complement property is therefore not enough to
characterize when a signal is uniquely defined by its FMMs.

In deriving guarantees for FMMs, we need the concept of
a collision free vector introduced in [17, Def. 1].

Definition 3 (Collision free vector). Let x(i) denote the ith
element of the vector x. We say that x is collision free if
x(i)− x(j) 6= x(k)− x(l), for all distinct i, j, k, l ∈ {i : i ∈
{1, . . . ,M}, x(i) 6= 0}.

We are now ready to state the following theorem on the
uniqueness of a sparse real solution given its FMMs.

Theorem 7. Let {k1, k2, . . . , kN} ⊆ {0, . . . , 2M − 1},

ϕn =
[
1 e−i2πkn/2M e−i4πkn/2M . . . e−i2π(2M−1)kn/2M

]T
,

(6)
with i =

√
−1, and let A : RM/T→ RN be defined by

(A(x))(n) = |〈ϕn,
[
xT 01×M

]T〉|2, n = 1, . . . , N.
(7)

Assume that we are given y = A(x0) ∈ RN with N a prime
integer larger than 2(‖x0‖20 − ‖x0‖0 + 1). Then a collision
free x0 ∈ RM is uniquely defined by y whenever

• ‖x0‖0 6= 6, or

• ‖x0‖0 = 6 and x0(i) 6= x0(j), for some i, j ∈ {i : i ∈
{1, . . . ,M}, x0(i) 6= 0}.

The implication of the theorem is that we can guarantee a
unique solution from FMMs as long as enough measurements
are taken, the signal is sparse enough, collision free and the
support constrained.

Proof. If there are no collisions and x0 ∈ RM is k-sparse,
then the autocorrelation a ∈ R2M−1, defined as

a(l) =

min{M,M−l}∑
s=max{1,1−l}

x0(s)x0(s+ l), l = 1−M, . . . ,M − 1,

(8)
is k2 − k + 1-sparse (see for instance [17]). We further
have that the autocorrelation is centro-symmetric, a(l) =
a(−l), l = 0, . . . ,M−1, and via Wiener-Khinchin’s theorem
that a(l), l = 0, . . . ,M−1, is related to y(n), n = 1, . . . , N,
via y(n) = 〈ϕn, [a(0) . . . a(M − 1) 0a(M − 1)a(M −
2) . . . a(1)]T〉.

Ignoring the symmetry, the problem of recovering the
sparse autocorrelation from the partial FMMs y can therefore
be posed as

min
q∈R2M

‖q‖0

s. t. y(n) = 〈ϕn,q〉, n = 1, . . . , N,

0 = q(M + 1).

(9)

This is a well studied problem in compressive sensing (see for
instance [19, 20]) and using the result of [21, Thm. 1.1] it can
be shown that if N is prime and satisfies

2
(
‖x0‖20 − ‖x0‖0 + 1

)
≤ N, (10)

then (9) has a unique solution. This because a(1), . . . ,a(M−
1) contain (‖x0‖20 − ‖x0‖0)/2 nonzero elements at most.

Finally, it was recently shown in [17] that whenever there
are no collisions in x0 and the following conditions are satis-
fied, then the autocorrelation uniquely defines x0:

• ‖x0‖0 6= 6, or

• ‖x0‖0 = 6 and x0(i) 6= x0(j), for some i, j ∈ {i : i ∈
{1, . . . ,M}, x0(i) 6= 0}, or

• ‖x0‖0 = 6 and x0(i) = x0(j), for all i, j ∈ {i : i ∈
{1, . . . ,M},x0(i) 6= 0}. In this case, the autocorrela-
tion uniquely defines x0 almost surely.

Hence, under the conditions of the theorem, the FMMs y
uniquely define a, and a uniquely defines x0, from which the
theorem follows.

Note that the theorem does not require the Fourier ba-
sis vectors to be selected deterministically or randomly and
therefore holds for both.

4. CONCLUSION

Even though phase retrieval is a longstanding problem in op-
tics it is still not well understood whether a collection of mea-
surements provides an injective map or not. It was recently
shown that the complement property gives necessary and suf-
ficient conditions for the uniqueness of a real signal and a real
collection of measurement vectors. Here we show that if the
measurement vectors satisfy a weaker version of the comple-
ment property then a sought sparse signal can be guaranteed
to be uniquely defined by associated intensity measurements.
We also consider a complex collection of measurement vec-
tors and Fourier magnitude measurements. We show that in
general, 2(k2 − k+ 1) Fourier magnitude measurements suf-
fice to uniquely determine a k-sparse signal.
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